toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Alldredge, A.L.; King, J.M. url  doi
openurl 
  Title Effects of moonlight on the vertical migration patterns of demersal zooplankton Type Journal Article
  Year 1980 Publication Journal of Experimental Marine Biology and Ecology Abbreviated Journal Journal of Experimental Marine Biology and Ecology  
  Volume 44 Issue 2 Pages 133-156  
  Keywords Animals  
  Abstract (up) The diel vertical migration patterns of demersal zooplankton, those organisms which habit bottom substrates but periodically emerge to swim freely in the water column, water determined throughout the lunar cycle. Demersal zooplankton were quantitatively sampled on a subtidal sand flat in the Gulf of California every 2 h for 24-h periods at new, full, first, and last-quarter moons, both as they emerged into the water column and as they returned to the benthos. Demersal zooplankton rarely migrated during daylight. Three general patterns of migration were observed. (1) Polychaetes and cumaceans emerged from the benthos at dusk, regardless of the phase of the moon. Polychaetes returned to the benthos throughout the night while cumaceans returned near dawn. (2) Species of amphipods and isopods exhibited significant avoidance of moonlight, delaying emergence until moonset or returning to the benthos at moonrise. (3) Species of copepods, mysids, shrimp, Branchiostoma (cephalochordate), and tanaids emerged into the water column throughout the night. The timing of migration was highly variable and did not correlate with the presence or absence of moonlight. Large zooplankton migrated less frequently into the water column during moonlit periods than small forms, suggesting that nocturnal predation by visually oriented planktivorous fish may be an important selective pressure.

Demersal zooplankton emerged into artificially darkened emergence traps in significantly higher numbers during daylight and during full and quarter moons than into undarkened control traps, demonstrating that absence of light is a major cue stimulating migration. Reentry traps resting on the bottom captured higher densities of demersal zooplankton than either emergence traps or reentry traps suspended off the bottom. Thus, many demersal zooplankton remain near the bottom, rarely swimming far into the water column. Some trap avoidance was observed and current methods for collecting demersal zooplankton are evaluated. Since most demersal zooplankton remained in the water column only a short time, dispersal, particularly over short distances, may be a major advantage of migratory behavior. Migration facilitates rapid recolonization of disturbed or defaunated sites, disrupts and mixes bottom sediments, and results in daily variation in the microdistribution, patchiness, and species composition of the benthic fauna.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0981 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 423  
Permanent link to this record
 

 
Author Viera-Perez, M.; Hernandez-Calvento, L.; Hesp, P.A.; Santana-Del Pino, A. url  doi
openurl 
  Title Effects of artificial light on flowering of foredune vegetation Type Journal Article
  Year 2019 Publication Ecology Abbreviated Journal Ecology  
  Volume 100 Issue 5 Pages e02678  
  Keywords Plants; Coastal management; coastal dunes; Canary Islands; Spain; Europe  
  Abstract (up) The impact of ecological light pollution involves alteration of periods of natural light, a fact that has proven effects on ecosystems. Few studies have focused on the impact of this pollution on wild plant species, and none on coastal dune plants. Many coastal dunes and their plants are adjacent to tourist areas, and these might be affected by light pollution. Such is the case of the Natural Reserve Dunas de Maspalomas (Gran Canaria), where some individuals of the plant species Traganum moquinii, located in the El Ingles beach foredune zone, are affected by light pollution. This study examines the effect of light pollution on the flowering process, and by extension the reproductive cycle of these plants. Plants located closer to high artificial illumination sources receive ~2120 hours per year of intense light more than plants located furthest from those artificial lighting sources. Parts of the plants of Traganum moquinii exposed directly to the artificial light show a significant decrease in the production of flowers, compared to the parts in plants in shade, and to the plants more distant from artificial lights. In consequence, plants exposed more directly to artificial light have a lower potential for seed reproduction. The spectrum of artificial light also affects the plants, and light between 600 and 700 nm primarily affects the reproductive cycle of the Traganum moquinii species. The implications for the ecological and geomorphological functioning of the dune system are discussed, because this species plays a decisive role in the formation of foredune zones and nebkhas in arid dune systems.  
  Address Departamento de Matematicas, Universidad de Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain  
  Corporate Author Thesis  
  Publisher Ecological Society of America Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30825328 Approved no  
  Call Number GFZ @ kyba @ Serial 2244  
Permanent link to this record
 

 
Author Grant, R.; Halliday, T.; Chadwick, E. url  doi
openurl 
  Title Amphibians' response to the lunar synodic cycle--a review of current knowledge, recommendations, and implications for conservation Type Journal Article
  Year 2013 Publication Behavioral Ecology Abbreviated Journal Behavioral Ecology  
  Volume 24 Issue 1 Pages 53-62  
  Keywords amphibians; circular statistics; light; lunar cycle; moon phase; predator avoidance; reproductive synchronization; moonlight  
  Abstract (up) The way in which amphibians respond to the geophysical changes brought about by the lunar synodic cycle is a neglected area of their ecology, but one which has recently generated interest. Knowledge of how amphibians respond to lunar phase is of intrinsic interest and also may be important for conservation and monitoring of populations. We surveyed the literature on amphibians’ responses to the lunar cycle and found 79 examples where moon phase in relation to amphibian behavior and ecology had been studied, across diverse amphibian taxa. Of the examples reviewed, most of them show some type of response to lunar phase, with only a few species being unaffected. We found that there is no significant difference between the numbers of species which increase, and those that decrease activity or reproductive behavior (including calling) during a full moon. The responses to the lunar cycle can not be generalized across taxonomic group, but instead are highly species specific and relate directly to the species’ ecology. The primary reasons for changes in amphibian behavior in response to the lunar cycle appear to be temporal synchronization of breeding and predator avoidance. Responses to changes in prey availability, facilitation of visual signalling and use of lunar cues in navigation and homing are less prevalent but merit further investigation. Comparisons between studies are hampered by differences in field and analytical methods; we therefore make a number of recommendations for future collection and analysis of data related to lunar phase.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1045-2249 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 81  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: