toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cruz, L.M.; Shillinger, G.L.; Robinson, N.J.; Tomillo, P.S.; Paladino, F.V. url  doi
openurl 
  Title Effect of light intensity and wavelength on the in-water orientation of olive ridley turtle hatchlings Type Journal Article
  Year 2018 Publication Journal of Experimental Marine Biology and Ecology Abbreviated Journal Journal of Experimental Marine Biology and Ecology  
  Volume 505 Issue Pages (down) 52-56  
  Keywords Animals  
  Abstract Light pollution, associated with coastal development, poses a growing threat to sea turtles. Hatchlings are particularly affected during their crawl to the ocean since they exhibit phototaxis and may move towards or be disoriented by artificial lights. Although much is known about how hatchlings respond to artificial light while crawling to the ocean, far less is known about their response after reaching the water. Here, we investigate how hatchling olive ridley turtles (Lepidochelys olivacea) held in artificial pools responded to light of different wavelengths (red, 720 nm; yellow, 660 nm and green, 520 nm) and intensities (0.1–3.3 lx, mean 0.87 lx, SD = 0.85, 10.3–45.9 lx, mean 15.75 lx,SD = 7.12; 47.5–84.2 lx; mean 52.02 lx, SD = 9.11; 91.3–140.8 lx, mean 105 lx, SD = 13.24; 150.1–623 lx, mean 172.18 lx, SD = 73.42). When no light or red light below 39 lx was present, hatchlings oriented at a mean angle of 180° from true north and did not orient towards any discernable feature. However, hatchlings swam towards the light at intensities of red light above 39 lx, yellow light above 10 lx and green light above 5 lx. Our findings indicate that sea turtles will swim towards artificial lights even after reaching the water. Thus, we recommend light mitigation efforts should extend beyond nesting beaches and into the associated oceanic habitats.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-0981 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1894  
Permanent link to this record
 

 
Author Heiling, A.M. url  doi
openurl 
  Title Why do nocturnal orb-web spiders (Araneidae) search for light? Type Journal Article
  Year 1999 Publication Behavioral Ecology and Sociobiology Abbreviated Journal Behavioral Ecology and Sociobiology  
  Volume 46 Issue 1 Pages (down) 43-49  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0340-5443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 671  
Permanent link to this record
 

 
Author Shima, J.S.; Swearer, S.E. url  doi
openurl 
  Title Moonlight enhances growth in larval fish Type Journal Article
  Year 2018 Publication Ecology Abbreviated Journal Ecology  
  Volume in press Issue Pages (down)  
  Keywords Animals; Moonlight  
  Abstract Moonlight mediates trophic interactions and shapes the evolution of life-history strategies for nocturnal organisms. Reproductive cycles and important life-history transitions for many marine organisms coincide with moon phases, but few studies consider the effects of moonlight on pelagic larvae at sea. We evaluated effects of moonlight on growth of pelagic larvae of a temperate reef fish using 'master chronologies' of larval growth constructed from age-independent daily increment widths recorded in otoliths of 321 individuals. We found that daily growth rates of fish larvae were enhanced by lunar illumination after controlling for the positive influence of temperature and the negative influence of cloud cover. Collectively, these results indicate that moonlight enhances growth rates of larval fish. This pattern is likely the result of moonlight's combined effects on foraging efficiency and suppression of diel migrations of mesopelagic predators, and has the potential to drive evolution of marine life histories. This article is protected by copyright. All rights reserved.  
  Address School of BioSciences, University of Melbourne, Melbourne, 3010, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30422325 Approved no  
  Call Number GFZ @ kyba @ Serial 2059  
Permanent link to this record
 

 
Author Bolliger, J.; Hennet, T.; Wermelinger, B.; Bösch, R.; Pazur, R.; Blum, S.; Haller, J.; Obrist, M.K. url  doi
openurl 
  Title Effects of traffic-regulated street lighting on nocturnal insect abundance and bat activity Type Journal Article
  Year 2020 Publication Basic and Applied Ecology Abbreviated Journal Basic and Applied Ecology  
  Volume in press Issue Pages (down) in press  
  Keywords Animals  
  Abstract New technological developments modulate the light levels of LED street luminaires according to traffic volumes: light levels are increased given traffic and reduced in its absence. Such dimming of street lights reduces the level of artificial light at night (ALAN) and may thus contribute to mitigate light pollution. To quantify the impact of traffic-driven dimming of street lights on nocturnal insect abundance and bat activity in comparison to full light (i.e., dimming functions of luminaires switched off), we mounted 20 insect flight-interception traps and ten batloggers on street light poles along two dimmable street light sections. Insect abundance and bat activity were measured alternately with one week of full street lighting followed by a week with light levels modulated by traffic volumes. In total, 16 dimmed and 16 full-light days were investigated. Overall, traffic-driven dimming reduced light levels by 35%. Weather conditions (warm, dry nights) were the main drivers of insect abundance and bat activity, but traffic-driven dimming resulted in lower numbers of insects caught and reduced bat activity. Among insect groups, Heteroptera benefited most from dimming. For bats, urban exploiters (Pipistrellus spp.) benefited from increased availability of prey at brightly lit street lights, while less frequent species (Myotis spp.) did not benefit from street lighting. We conclude that street light dimming technology may contribute to mitigate negative effects of ALAN on nocturnal organisms, although the measure may not be efficient enough to support light-sensitive and threatened species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-1791 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3027  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: