toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author McMahon, T.A.; Rohr, J.R.; Bernal, X.E. url  doi
openurl 
  Title Light and noise pollution interact to disrupt interspecific interactions Type Journal Article
  Year 2017 Publication Ecology Abbreviated Journal Ecology  
  Volume 98 Issue 5 Pages 1290-1299  
  Keywords Animals  
  Abstract Studies on the consequences of urbanization often examine the effects of light, noise, and heat pollution independently on isolated species providing a limited understanding of how these combined stressors affect species interactions. Here, we investigate how these factors interact to affect parasitic frog-biting midges (Corethrella spp.) and their tungara frog (Engystomops pustulosus) hosts. A survey of tungara frog calling sites revealed that frog abundance was not significantly correlated with urbanization, light, noise, or temperature. In contrast, frog-biting midges were sensitive to light pollution and noise pollution. Increased light intensity significantly reduced midge abundance at low noise levels. At high noise intensity, there were no midges regardless of light level. Two field experiments controlling light and noise levels to examine attraction of the midges to their host and their feeding behavior confirmed the causality of these field patterns. These findings demonstrate that both light and noise pollution disrupt this host-parasite interaction and highlight the importance of considering interactions among species and types of pollutants to accurately assess the impacts of urbanization on ecological communities.  
  Address Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, Indiana, 47907, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0012-9658 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28170099 Approved no  
  Call Number GFZ @ kyba @ Serial 2443  
Permanent link to this record
 

 
Author Straka, T.M.; Greif, S.; Schultz, S.; Goerlitz, H.R.; Voigt, C.C. url  doi
openurl 
  Title The effect of cave illumination on bats Type Journal Article
  Year 2019 Publication Global Ecology and Conservation Abbreviated Journal Global Ecology and Conservation  
  Volume 21 Issue Pages e00808  
  Keywords Animals; Lighting  
  Abstract Artificial light at night has large impacts on nocturnal wildlife such as bats, yet its effect varies with wavelength of light, context, and across species involved. Here, we studied in two experiments how wild bats of cave-roosting species (Rhinolophus mehelyi, R. euryale, Myotis capaccinii and Miniopterus schreibersii) respond to LED lights of different colours. In dual choice experiments, we measured the acoustic activity of bats in response to neutral-white, red or amber LED at a cave entrance and in a flight room – mimicking a cave interior. In the flight room, M. capaccinii and M. schreibersii preferred red to white light, but showed no preference for red over amber, or amber over white light. In the cave entrance experiment, all light colours reduced the activity of all emerging species, yet red LED had the least negative effect. Rhinolophus species reacted most strongly, matching their refusal to fly at all under any light treatment in the flight room. We conclude that the placement and light colour of LED light should be considered carefully in lighting concepts for caves both in the interior and at the entrance. In a cave interior, red LED light could be chosen – if needed at all – for careful temporary illumination of areas, yet areas important for bats should be avoided based on the precautionary principle. At cave entrances, the high sensitivity of most bat species, particularly of Rhinolophus spp., towards light sources almost irrespective of colour, calls for utmost caution when illuminating cave entrances.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2351-9894 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2700  
Permanent link to this record
 

 
Author Nankoo, S.; Raymond, S.; Galvez-Cloutier, R. url  doi
openurl 
  Title The impact of the Jacques Cartier bridge illumination on the food chain: from insects to predators Type Journal Article
  Year 2019 Publication Community Ecology Abbreviated Journal Community Ecology  
  Volume 20 Issue 2 Pages 172-180  
  Keywords Animals; Ecology  
  Abstract Artificial light at night can impact numerous diurnal species by influencing their distribution and habits. In this study, artificial lights placed on the Jacques Cartier bridge in Montreal, Canada were evaluated to determine their impact on insects, insectivorous birds and peregrine falcons. The impact was measured the year the illumination begun and the year following (two years in total). Insect distribution and abundance at three different sites around the bridge was measured. Insectivorous bird abundance and activity were evaluated by observing the cliff swallow as a proxy. Peregrine falcon presence and nesting behavior at the bridge was measured. Insects (aerial and aquatic) were found to be more abundant closer to the illuminated part of the bridge and particularly in the year following the illumination's beginning. Similarly, cliff swallows were more abundant at the bridge the year following the start of the illumination and their activity was more important closer to the illuminated section. Peregrine falcons were only present at the bridge in the year following the beginning of the illumination and specifically at the illuminated part of the bridge. No nesting was detected. These three groups are connected to each other through a food chain in which insect abundance impacts insectivorous bird abundance, which in turn impacts peregrine falcon presence. The illumination therefore positively impacts these three groups separately and together through their food chain. This research highlights the importance of monitoring bird and insect population close to the bridge and further continuation of these observations are necessary to determine if the observed tendency will continue to develop throughout the years.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1585-8553 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2705  
Permanent link to this record
 

 
Author Bolliger, J.; Hennet, T.; Wermelinger, B.; Bösch, R.; Pazur, R.; Blum, S.; Haller, J.; Obrist, M.K. url  doi
openurl 
  Title Effects of traffic-regulated street lighting on nocturnal insect abundance and bat activity Type Journal Article
  Year 2020 Publication Basic and Applied Ecology Abbreviated Journal Basic and Applied Ecology  
  Volume in press Issue Pages in press  
  Keywords Animals  
  Abstract New technological developments modulate the light levels of LED street luminaires according to traffic volumes: light levels are increased given traffic and reduced in its absence. Such dimming of street lights reduces the level of artificial light at night (ALAN) and may thus contribute to mitigate light pollution. To quantify the impact of traffic-driven dimming of street lights on nocturnal insect abundance and bat activity in comparison to full light (i.e., dimming functions of luminaires switched off), we mounted 20 insect flight-interception traps and ten batloggers on street light poles along two dimmable street light sections. Insect abundance and bat activity were measured alternately with one week of full street lighting followed by a week with light levels modulated by traffic volumes. In total, 16 dimmed and 16 full-light days were investigated. Overall, traffic-driven dimming reduced light levels by 35%. Weather conditions (warm, dry nights) were the main drivers of insect abundance and bat activity, but traffic-driven dimming resulted in lower numbers of insects caught and reduced bat activity. Among insect groups, Heteroptera benefited most from dimming. For bats, urban exploiters (Pipistrellus spp.) benefited from increased availability of prey at brightly lit street lights, while less frequent species (Myotis spp.) did not benefit from street lighting. We conclude that street light dimming technology may contribute to mitigate negative effects of ALAN on nocturnal organisms, although the measure may not be efficient enough to support light-sensitive and threatened species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title (up)  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1439-1791 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3027  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: