toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Alamús, R.; Bará, S.; Corbera, J.; Escofet, J.; Palà , V.; Pipia, L.; Tardà, A. url  doi
openurl 
  Title Ground-based hyperspectral analysis of the urban nightscape Type Journal Article
  Year 2017 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 124 Issue Pages 16-26  
  Keywords Instrumentation; Remote Sensing  
  Abstract Airborne hyperspectral cameras provide the basic information to estimate the energy wasted skywards by outdoor lighting systems, as well as to locate and identify their sources. However, a complete characterization of the urban light pollution levels also requires evaluating these effects from the city dwellers standpoint, e.g. the energy waste associated to the excessive illuminance on walls and pavements, light trespass, or the luminance distributions causing potential glare, to mention but a few. On the other hand, the spectral irradiance at the entrance of the human eye is the primary input to evaluate the possible health effects associated with the exposure to artificial light at night, according to the more recent models available in the literature. In this work we demonstrate the possibility of using a hyperspectral imager (routinely used in airborne campaigns) to measure the ground-level spectral radiance of the urban nightscape and to retrieve several magnitudes of interest for light pollution studies. We also present the preliminary results from a field campaign carried out in the downtown of Barcelona.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1613  
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R. url  openurl
  Title Mapping city lights with night-time data from the DMSP operational linescan system. Type Journal Article
  Year 1997 Publication Photogrammetric Engineering and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 63 Issue 6 Pages 727-734  
  Keywords Remote Sensing  
  Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to detect low levels of visible and near-infrared (VNIR) radiance at

night. With the OLS “VIS” band data, it is possible to detect clouds illuminated by moonlight, plus lights from cities, towns, industrial sites, gas pares, and ephemeral events such as fires and lightning illuminated clouds. This paper presents methods which have been developed for detecting and geolocating VNIR emission sources with nighttime DMSP-OLS data and the analysis of image time series to identify spatially stable emissions from cities, towns, and industrial sites. Results are presented for the United States.
 
  Address Desert Research Institute, University of Nevada System, Reno, NV 89506 and the Solar-Terrestrial Physics Division, National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO 80303; cde(at)ngdc.noaa.gov  
  Corporate Author Thesis  
  Publisher American Society for Photogrammetry and Remote Sensing Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 497  
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T. url  doi
openurl 
  Title Night-time lights of the world: 1994–1995 Type Journal Article
  Year 2001 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 56 Issue 2 Pages 81-99  
  Keywords Remote Sensing  
  Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique low-light imaging capability developed for the detection of clouds using moonlight. In addition to moonlit clouds, the OLS also detects lights from human settlements, fires, gas flares, heavily lit fishing boats, lightning and the aurora. By analysing the location, frequency, and appearance of lights observed in an image time series, it is possible to distinguish four primary types of lights present at the earth's surface: human settlements, gas flares, fires, and fishing boats. We have produced a global map of the four types of light sources as observed during a 6-month time period in 1994–1995. We review a number of environmental applications that have been developed or proposed based on the night-time light data. We examine the relationship between area of lighting, population, economic activity, electric power consumption, and energy related carbon emissions for 200 nations, representing 99% of the world's population.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2009  
Permanent link to this record
 

 
Author (up) Guk, E.; Levin, N. url  doi
openurl 
  Title Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image – Jerusalem as a case study Type Journal Article
  Year 2020 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 163 Issue Pages 121-136  
  Keywords Remote Sensing  
  Abstract In recent decades, there has been an increase in artificial lighting in the world due to urbanization and the revolution of LED lighting. Artificial lighting is an indicator of human activity, but can adversely affect natural ecosystems and people due to negative impacts of light pollution. Space-borne and airborne imagery as well as ground-based measurements enable to measure the intensity and spectra of artificial lights. One of the challenges in remote sensing of night-time lights is how to ground truth night-time imagery acquired by satellites, and how much do space-borne measurements represent the brightness as perceived by organisms. Most of the studies on night-time lights to-date were done using panchromatic sensors at large spatial extents, which did not allow to examine intra-urban variation in night light intensity and spectra. The aim of this study was to test the capability of the new Chinese satellite Jilin-1, which is the first commercial satellite to offer multispectral night-light imagery at a spatial resolution below 1 m, to characterize the night-time properties of urban areas. We examined the correspondence between light intensities as measured from different sensors at different spatial resolutions: two Jilin-1 images of the Jerusalem metropolitan area (0.89 m), VIIRS/DNB (500 m), Loujia-1 (130 m), unmanned aerial vehicle (UAV) color image (0.05 m) and hemispherical color photographs taken by a calibrated ground DSLR (digital single-lens reflex camera). In all the comparisons between different remote sensing tools, as the spatial resolution coarsened, the Pearson correlation coefficient increased, reaching > 0.5 (after resampling to 100 m). Stronger correlations were found for the red band, and weaker correlations were found for the blue band, probably due to atmospheric scattering. By identifying specific objects such as buildings and lightings, we found good correspondence () between Jilin-1 and the ground-based measurements of night-time brightness. We further examined the variability of night lights within different land use types and within different ethnic/religion composition of statistical areas. We found that residential areas of Orthodox Jews were characterized with the highest brightness at night compared with residential areas of Arabs in the West Bank that had the lowest brightness. At the statistical zone level (n = 299), more than 50% of the variability in night-time brightness, was explained by land cover properties (NDVI), infrastructure (roads and built volume) and the ethnic/religious composition. In addition, we found that the spectral ratio index which was based on the red and green bands, enabled to better distinguish between land use classes, than the spectral ratio index which was based on the green and blue bands. The availability of night-time multi-spectral imagery at fine spatial resolution now enables to study urban land-use and spatial inequality, and to better understand the factors explaining night-time brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2857  
Permanent link to this record
 

 
Author (up) Sun, C.; Liu, Y.; Zhao, S.; Jin, S. url  doi
openurl 
  Title Estimating offshore oil production using DMSP-OLS annual composites Type Journal Article
  Year 2020 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 165 Issue Pages 152-171  
  Keywords Remote Sensing  
  Abstract Offshore oil exploitation is expanding worldwide in response to the increasing demand for global energy. The long-term acquisition of information on offshore oil production is essential to solve geo-political conflicts and to control marine pollution. However, such information is either dispersed among different authorities or may not even exist. Night-Time Lights (NTL) data has advantages in terms of synoptic coverage and repeatability, providing the opportunity to collect information about marine resources and energy. Until recently, estimating offshore oil production using NTL data was still challenging, largely due to the inability of distinguishing the NTL of oil and gas production. Here, we present an approach for retrieving the spatio-temporal distribution of offshore oil production using DMSP-OLS annual composites. Starting with the geo-locations of offshore platforms, we first propose a Method for Platform Type Classification (MPTC) to discriminate oil platforms from gas platforms. A Model for Oil Production Estimation and Assignment (MOPEA) was then designed by correlating the sum of brightness from oil platforms with offshore oil production. Given worldwide data availability, the offshore regions of the United Kingdom (UK) were used as the initial study area. The principal results are as follows: (i) the overall accuracy of the MPTC and the relative error of the MOPEA were 87.8% and 11.5%, respectively, and the production of each oilfield was in order of magnitude agreement with reality; (ii) there were 365 oil platforms and 258 gas platforms in the UK during 1992–2013, with a distinct spatial distribution north and south of the latitude of 55°N; and (iii) the offshore oil production of the UK declined substantially during 1992–2013, from 9.92 × 107 to 5.63 × 107 sm3, despite an increase in the number of oilfields from 39 to 120 plots; this was mainly because the loss of production in previously highly productive oilfields was too great to be offset by the increased number of low production oilfields. The regional transferability of the MPTC and MOPEA was then validated with reference to three other offshore regions (the Gulf of Guinea of Nigeria, the South China Sea, and the northern Gulf of Mexico of the USA) with satisfactory results. In addition, the MPTC and MOPEA are demonstrated to be capable of extension to the NPP-VIIRS products, paving the way for future applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2987  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: