|   | 
Details
   web
Records
Author (up) Hsu, C.-N.; Tain, Y.-L.
Title Light and Circadian Signaling Pathway in Pregnancy: Programming of Adult Health and Disease Type Journal Article
Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 21 Issue 6 Pages
Keywords Review; Human Health; circadian rhythm; developmental origins of health and disease (DOHaD); developmental programming; glucocorticoid; hypertension; light; melatonin; pregnancy
Abstract Light is a crucial environmental signal that affects elements of human health, including the entrainment of circadian rhythms. A suboptimal environment during pregnancy can increase the risk of offspring developing a wide range of chronic diseases in later life. Circadian rhythm disruption in pregnant women may have deleterious consequences for their progeny. In the modern world, maternal chronodisruption can be caused by shift work, jet travel across time zones, mistimed eating, and excessive artificial light exposure at night. However, the impact of maternal chronodisruption on the developmental programming of various chronic diseases remains largely unknown. In this review, we outline the impact of light, the circadian clock, and circadian signaling pathways in pregnancy and fetal development. Additionally, we show how to induce maternal chronodisruption in animal models, examine emerging research demonstrating long-term negative implications for offspring health following maternal chronodisruption, and summarize current evidence related to light and circadian signaling pathway targeted therapies in pregnancy to prevent the development of chronic diseases in offspring.
Address Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:32210175 Approved no
Call Number GFZ @ kyba @ Serial 2874
Permanent link to this record
 

 
Author (up) Kopperud, K.L.; Grace, M.S.
Title Circadian Rhythms of Retinomotor Movement in a Marine Megapredator, the Atlantic Tarpon, Megalops atlanticus Type Journal Article
Year 2017 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 18 Issue 10 Pages
Keywords Animals
Abstract Many ecologically and economically important marine fish species worldwide spend portions of their lives in coastal regions that are increasingly inundated by artificial light at night. However, while extensive research illustrates the harmful effects of inappropriate light exposure on biological timing in humans, rodents and birds, comparable studies on marine fish are virtually nonexistent. This study aimed to assess the effects of light on biological clock function in the marine fish retina using the Atlantic tarpon (Megalops atlanticus) as a model. Using anti-opsin immunofluorescence, we observed robust rhythms of photoreceptor outer segment position (retinomotor movement) over the course of the daily light-dark cycle: cone outer segments were contracted toward the inner retina and rods were elongated during the day; the opposite occurred at night. Phase shifting the daily light-dark cycle caused a corresponding shift of retinomotor movement timing, and cone retinomotor movement persisted in constant darkness, indicating control by a circadian clock. Constant light abolished retinomotor movements of both photoreceptor types. Thus, abnormally-timed light exposure may disrupt normal M. atlanticus clock function and harm vision, which in turn may affect prey capture and predator avoidance. These results should help inform efforts to mitigate the effects of coastal light pollution on organisms in marine ecosystems.
Address College of Science, Florida Institute of Technology, 150 West University Blvd, Melbourne, FL 32901, USA. mgrace@fit.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:28956858 Approved no
Call Number LoNNe @ kyba @ Serial 1738
Permanent link to this record
 

 
Author (up) Liu, Z.; Lv, Y.; Ding, R.; Chen, X.; Pu, G.
Title Light Pollution Changes the Toxicological Effects of Cadmium on Microbial Community Structure and Function Associated with Leaf Litter Decomposition Type Journal Article
Year 2020 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 21 Issue 2 Pages
Keywords Plants; Illumina Sequencing; artificial light at night; cadmium pollution; extracellular enzyme activities; litter decomposition; microbial biodiversity
Abstract Artificial light at night (ALAN/A) can not only alter the behavior and communication of biological organisms, it can also interact with other stressors. Despite its widespread use and the numerous potential ecological effects, little is known about the impact of ALAN on plant litter decomposition under cadmium (Cd) pollution in aquatic ecosystems. In an indoor microcosm experiment, we tested single and combined effects of ALAN and Cd on the activities and community structure of fungi associated with plant litter. The results showed that ALAN and/or Cd can change both water and leaf litter characteristics. ALAN exposure not only altered fungal community structure and their correlations, but also increased the activities of alkaline phosphatase, beta-glucosidase, and cellobiohydrolase. The leaf litter decomposition rate was 71% higher in the A-Cd treatment than that in the N-Cd treatment, indicating that the presence of ALAN weakened the negative impact of Cd on leaf litter decomposition. These results suggested that ALAN exposure mitigated the negative effect of Cd on leaf litter decomposition, contributing to the duel effect of ALAN on leaf litter decomposition. Overall, the results expand our understanding of ALAN on the environment and highlight the contribution of ALAN to Cd toxicity in aquatic ecosystems.
Address Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:31936535 Approved no
Call Number GFZ @ kyba @ Serial 2818
Permanent link to this record
 

 
Author (up) Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X.
Title Artificial Light at Night Alleviates the Negative Effect of Pb on Freshwater Ecosystems Type Journal Article
Year 2019 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci
Volume 20 Issue 6 Pages
Keywords Ecology; freshwater; ecosystems; metal pollution
Abstract Artificial light at night (ALAN) is an increasing phenomenon worldwide that can cause a series of biological and ecological effects, yet little is known about its potential interaction with other stressors in aquatic ecosystems. Here, we tested whether the impact of lead (Pb) on litter decomposition was altered by ALAN exposure using an indoor microcosm experiment. The results showed that ALAN exposure alone significantly increased leaf litter decomposition, decreased the lignin content of leaf litter, and altered fungal community composition and structure. The decomposition rate was 51% higher in Pb with ALAN exposure treatments than in Pb without ALAN treatments, resulting in increased microbial biomass, beta-glucosidase (beta-G) activity, and the enhanced correlation between beta-G and litter decomposition rate. These results indicate that the negative effect of Pb on leaf litter decomposition in aquatic ecosystems may be alleviated by ALAN. In addition, ALAN exposure also alters the correlation among fungi associated with leaf litter decomposition. In summary, this study expands our understanding of Pb toxicity on litter decomposition in freshwater ecosystems and highlights the importance of considering ALAN when assessing environmental metal pollutions.
Address College of Life Science, Guangxi Normal University, Guilin 541006, China. chenxx7276@163.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1422-0067 ISBN Medium
Area Expedition Conference
Notes PMID:30884876; PMCID:PMC6471329 Approved no
Call Number GFZ @ kyba @ Serial 2334
Permanent link to this record