|   | 
Details
   web
Records
Author (up) Bian, Z.; Yang, Q.; Li, T.; Cheng, R.; Barnett, Y.; Lu, C.
Title Study of the beneficial effects of green light on lettuce grown under short-term continuous red and blue light-emitting diodes Type Journal Article
Year 2018 Publication Physiologia Plantarum Abbreviated Journal Physiol Plant
Volume 164 Issue 2 Pages 226-240
Keywords Plants
Abstract Red and blue light are the most important light spectra for driving photosynthesis to produce adequate crop yield. It is also believed that green light may contribute to adaptations to growth. However, the effects of green light, which can trigger specific and necessary responses of plant growth, have been underestimated in the past. In this study, lettuce (Lactuca sativa L.) was exposed to different continuous light (CL) conditions for 48 h by a combination of red and blue light-emitting diodes (LEDs) supplemented with or without green LEDs, in an environmental-controlled growth chamber. Green light supplementation enhanced photosynthetic capacity by increasing net photosynthetic rates (Pn ), maximal photochemical efficiency (Fv /Fm ), electron transport for carbon fixation (JPSII ) and chlorophyll content in plants under the CL treatment. Green light decreased malondialdehyde and H2 O2 accumulation by increasing the activities of superoxide dismutase (SOD; EC 1.15.1.1) and ascorbate peroxidase (APX; EC 1.11.1.11) after 24 h of CL. Supplemental green light significantly increased the expression of photosynthetic genes LHCb and PsbA from 6 to 12 h, and these gene expression were maintained at higher levels than those under other light conditions between 12 and 24 h. However, a notable down-regulation of both LHCb and PsbA was observed during 24 to 48 h. These results indicate that the effects of green light on lettuce plant growth, via enhancing activity of particular components of antioxidantive enzyme system and promoting of LHCb and PsbA expression to maintain higher photosynthetic capacity, alleviated a number of the negative effects caused by CL.
Address School of Animal, Rural and Environmental Science, Brackenhurst Campus, Nottingham Trent University, NG25 0QF, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0031-9317 ISBN Medium
Area Expedition Conference
Notes PMID:29493775 Approved no
Call Number GFZ @ kyba @ Serial 1905
Permanent link to this record
 

 
Author (up) Kwak, M.J.; Lee, S.H.; Khaine, I.; Je, S.M.; Lee, T.Y.; You, H.N.; Lee, H.K.; Jang, J.H.; Kim, I.; Woo, S.Y.
Title Stomatal movements depend on interactions between external night light cue and internal signals activated by rhythmic starch turnover and abscisic acid (ABA) levels at dawn and dusk Type Journal Article
Year 2017 Publication Acta Physiologiae Plantarum Abbreviated Journal Acta Physiol Plant
Volume 39 Issue 8 Pages
Keywords Plants
Abstract Yellow poplar (Liriodendron tulipifera L.) is a widespread hardwood tree of great ecological and economic value. Light pollution caused by excessive and indiscriminate exposure to artificial night light has emerged as a new risk factor due to its adverse effects related to energy waste, sleep disorders, anthropogenic habitat disturbance, and perceptual disorder of daily and seasonal rhythms in wildlife. However, it remains unknown how associations between artificial night light and stomatal behaviors controlled by internal signals are established. After continuous exposure to artificial light at night over 3 years, leaves in the experimental set-up were measured for stomatal movements, starch turnover, endogenous abscisic acid (ABA) levels, and chloroplast ultrastructure during the growing season. Yellow poplar showed dynamic changes in stomatal movement, starch turnover, and endogenous ABA levels in response to day/artificial night light cycle, resulting in reduction of circadian phase-shifting capacity at both dusk and dawn and normal chloroplast development as compared with natural night. Nighttime light exposure may act as a major factor for disorder of circadian and circannual rhythms as well as physiological and ultrastructural repressor in plants, via a modification of the perceived photoperiod. Our study suggests that these dynamic responses can provide advantageous insights that complement the current knowledge on light pollution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0137-5881 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1682
Permanent link to this record