toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Obayashi, K.; Yamagami, Y.; Kurumatani, N.; Saeki, K. url  doi
openurl 
  Title Bedroom lighting environment and incident diabetes mellitus: a longitudinal study of the HEIJO-KYO cohort Type Journal Article
  Year 2019 Publication Sleep Medicine Abbreviated Journal Sleep Medicine  
  Volume 65 Issue Pages 1-3  
  Keywords Human Health; Metabolic disorders; diabetes; geriatrics  
  Abstract Objectives

Light information received by the brain influences human circadian timing and metabolism; low-level light at night (LAN) significantly increased body mass and led to prediabetes in mice. We hypothesized that LAN exposure increases the diabetes risk in humans. The aim of the present study was to evaluate a longitudinal association between LAN exposure and the incidence of diabetes in a general population.

Methods

In our prospective cohort study, bedroom light intensity was measured at 1-min intervals in 678 elderly participants without diabetes at baseline. The average light intensity recorded between bedtimes and rise times over two consecutive nights was used in the analysis.

Results

During follow-up (median, 42 months), 19 of the 678 participants (mean age, 70.6 years) developed diabetes. Poisson regression models revealed that the incidence rate for diabetes was significantly higher in the LAN group (average ≥5 lux, N = 128) than the dark group (average <5 lux, N = 550) (incidence rate ratio, 3.74; 95% confidence interval (CI), 1.55–9.05; p=0.003). Further propensity score adjustments in relation to LAN produced consistent results (incidence rate ratio, 3.19; 95% CI, 1.38–7.35; p=0.007). When the cut-off value of LAN was decreased to 3 lux, the relationship remained significant (incidence rate ratio 2.74; 95% CI, 1.19–6.33; p=0.018).

Conclusions

Our findings suggest that LAN exposure increases the incidence of diabetes in a general elderly population. Further research involving a large cohort with new-onset diabetes is warranted to elucidate these findings.
 
  Address Department of Epidemiology, Nara Medical University School of Medicine, 840 Shijocho, Kashiharashi, Nara, 634-8521, Japan; obayashi(at)naramed-u.ac.jp  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2605  
Permanent link to this record
 

 
Author (down) Lack, L.C.; Gradisar, M.; Van Someren, E.J.W.; Wright, H.R.; Lushington, K. url  doi
openurl 
  Title The relationship between insomnia and body temperatures Type Journal Article
  Year 2008 Publication Sleep Medicine Reviews Abbreviated Journal Sleep Med Rev  
  Volume 12 Issue 4 Pages 307-317  
  Keywords Human Health; Arousal/physiology; Body Temperature Regulation/*physiology; Circadian Rhythm/physiology; Homeostasis/physiology; Humans; Melatonin/blood; Phototherapy; Skin Temperature/physiology; Sleep Disorders, Circadian Rhythm/physiopathology/therapy; Sleep Initiation and Maintenance Disorders/*physiopathology/therapy; Sympathetic Nervous System/physiopathology; Wakefulness/physiology  
  Abstract Sleepiness and sleep propensity are strongly influenced by our circadian clock as indicated by many circadian rhythms, most commonly by that of core body temperature. Sleep is most conducive in the temperature minimum phase, but is inhibited in a “wake maintenance zone” before the minimum phase, and is disrupted in a zone following that phase. Different types of insomnia symptoms have been associated with abnormalities of the body temperature rhythm. Sleep onset insomnia is associated with a delayed temperature rhythm presumably, at least partly, because sleep is attempted during a delayed evening wake maintenance zone. Morning bright light has been used to phase advance circadian rhythms and successfully treat sleep onset insomnia. Conversely, early morning awakening insomnia has been associated with a phase advanced temperature rhythm and has been successfully treated with the phase delaying effects of evening bright light. Sleep maintenance insomnia has been associated not with a circadian rhythm timing abnormality, but with nocturnally elevated core body temperature. Combination of sleep onset and maintenance insomnia has been associated with a 24-h elevation of core body temperature supporting the chronic hyper-arousal model of insomnia. The possibility that these last two types of insomnia may be related to impaired thermoregulation, particularly a reduced ability to dissipate body heat from distal skin areas, has not been consistently supported in laboratory studies. Further studies of thermoregulation are needed in the typical home environment in which the insomnia is most evident.  
  Address School of Psychology, Flinders University, South Australia, Australia. leon.lack@flinders.edu.au  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1087-0792 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18603220 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 775  
Permanent link to this record
 

 
Author (down) Kim, J.; Hwang, K.; Cho, J.; Koo, D.; Joo, E.; Hong, S. url  doi
openurl 
  Title Effect of bedside light on sleep quality and background eeg rhythms Type Journal Article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Medicine  
  Volume 14 Issue Pages e170  
  Keywords Human Health  
  Abstract Artificial lighting has benefited society by extending the length of a productive day, but it can be ”light pollution” when it becomes excessive. Unnecessary exposure to artificial light at night can cause myopia, obesity, metabolic disorders and even some type of cancers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 502  
Permanent link to this record
 

 
Author (down) Kayaba, M.; Iwayama, K.; Ogata, H.; Seya, Y.; Tokuyama, K.; Satoh, M. url  doi
openurl 
  Title Drowsiness and low energy metabolism in the following morning induced by nocturnal blue light exposure Type Journal Article
  Year 2013 Publication Sleep Medicine Abbreviated Journal Sleep Medicine  
  Volume 14 Issue Pages e166-e167  
  Keywords blue light; light exposure; light at night; circadian disruption; drowsiness; melatonin; metabolism; sleep  
  Abstract Introduction

Evening light exposure debilitates the circadian rhythm and elicits sleep disturbance. Blue light peak wavelengths, around 460 nm, suppress melatonin secretion via the non-image-forming system. The effects of nocturnal blue light exposure on sleep have been reported to be specific but rather small (Münch, 2008). This study was designed to assess the effect of nocturnal blue light exposure on sleep and energy metabolism until noon the next day.

Materials and methods

Nine healthy male volunteers aged between 21 and 25 participated in this study which had a balanced cross-over design with intrasubject comparisons. After 2 h dark adaptation, the subjects were exposed to blue light or no light for 2 h. The peak wavelength of the blue LED was 465 nm, and the horizontal irradiance of the blue light at the height of eye was at 7.02fÊW/cm2. Sleep was recorded polysomnographically, and energy metabolism was measured with a whole body indirect calorimeter.

Results

There were no significant differences in sleep architecture and energy metabolism during the night. However, dozing (stages 1 and 2) was significantly higher (26.0 < 29.4 vs 6.3 < 8.1 min, P < 0.05), and energy expenditure, O2 consumption, CO2 production and the thermic effect of food (increase in energy expenditure after breakfast) were significantly lower the following morning in the blue light exposure subjects.

Conclusion

Contrary to our expectation, sleep architecture and energy metabolism during sleep were not affected by evening exposure to blue light. It might be due to our milder intervention by which subjects in a sitting position did not gaze at the light source set on the ceiling, while the subjects in previous studies directly received brighter light via custom built goggles (Cajochen, 2005; Münch, 2008) or gazed at a light source under the influence of mydriatic agents to dilate pupils (Brainard, 2001). New findings of the present study were that dozing (stages 1 and 2) was significantly increased, and energy metabolism was significantly lower the following morning in blue light exposed subjects. This suggests that modulation of the circadian rhythm is affected by nocturnal blue light exposure and the effect continues in the following daytime even if the intervention was mild.
 
  Address University of Tsukuba, Graduate School of Comprehensive Human Sciences, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 349  
Permanent link to this record
 

 
Author (down) Joo, E.Y.; Abbott, S.M.; Reid, K.J.; Wu, D.; Kang, J.; Wilson, J.; Zee, P.C. url  doi
openurl 
  Title Timing of light exposure and activity in adults with delayed sleep-wake phase disorder Type Journal Article
  Year 2016 Publication Sleep Medicine Abbreviated Journal Sleep Med  
  Volume 32 Issue Pages 259-265  
  Keywords Human Health  
  Abstract OBJECTIVE: To characterize the patterns of light exposure and physical activity level and assess their relationship with sleep quality and depressive symptoms in adults with delayed sleep-wake phase disorder (DSWPD). METHODS: 42 DSWPD (22 female, mean age 34.5 y) and 26 (+/-4 years) age-and-sex-matched controls (12 female, mean age 33.4 y) underwent seven days of light and activity monitoring. RESULTS: Individuals with DSWPD had significantly delayed bed times and wake times, but similar sleep duration compared to controls. Subjective sleep quality (Pittsburgh Sleep Quality Index (PSQI)) was poorer in DSWPDs compared to controls. Those with DSWPD had significantly more activity and light exposure late at night (2:00-4:00) and significantly less activity and light exposure in the morning (8:00-11:00). Total 24 h levels of light and activity were not significantly different between DSWPD and controls. However, the DSWPD group had significantly more light exposure than controls 22 h after waking, during their sleep period. Later light exposure correlated with higher depression scores [Beck Depression Index (BDI)] and poorer sleep quality (PSQI). CONCLUSIONS: The light exposure patterns observed in DSWPD likely contribute to and perpetuate the chronically delayed sleep and wake phase in these patients. In addition, increased light exposure during the sleep period may also contribute to the poor sleep quality and mood disorders that are common in these individuals.  
  Address Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. Electronic address: p-zee@northwestern.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1389-9457 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27964860 Approved no  
  Call Number LoNNe @ kyba @ Serial 1639  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: