|   | 
Details
   web
Records
Author (up) Anderson, S.J.; Tuttle, B.T.; Powell, R.L.; Sutton, P.C.
Title Characterizing relationships between population density and nighttime imagery for Denver, Colorado: issues of scale and representation Type Journal Article
Year 2010 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 31 Issue 21 Pages 5733-5746
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 702
Permanent link to this record
 

 
Author (up) Coesfeld, J.; Anderson, S.; Baugh, K.; Elvidge, C.; Schernthanner, H.; Kyba, C.
Title Variation of Individual Location Radiance in VIIRS DNB Monthly Composite Images Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 12 Pages 1964
Keywords Remote Sensing; Instrumentation
Abstract With the growing size and use of night light time series from the Visible Infrared Imaging Radiometer Suite Day/Night Band (DNB), it is important to understand the stability of the dataset. All satellites observe differences in pixel values during repeat observations. In the case of night light data, these changes can be due to both environmental effects and changes in light emission. Here we examine the stability of individual locations of particular large scale light sources (e.g., airports and prisons) in the monthly composites of DNB data from April 2012 to September 2017. The radiances for individual pixels of most large light emitters are approximately normally distributed, with a standard deviation of typically 15–20% of the mean. Greenhouses and flares, however, are not stable sources. We observe geospatial autocorrelation in the monthly variations for nearby sites, while the correlation for sites separated by large distances is small. This suggests that local factors contribute most to the variation in the pixel radiances and furthermore that averaging radiances over large areas will reduce the total variation. A better understanding of the causes of temporal variation would improve the sensitivity of DNB to lighting changes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2129
Permanent link to this record
 

 
Author (up) Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E.
Title A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 214 Issue Pages 133-145
Keywords Skyglow; Remote Sensing
Abstract We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1879
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Baugh, K.E.; Anderson, S.J.; Sutton, P.C.; Ghosh, T.
Title The Lumen Gini Coefficient: a satellite imagery derived human development index Type Journal Article
Year 2012 Publication Social Geography Discussions Abbreviated Journal Soc. Geogr. Discuss.
Volume 8 Issue 1 Pages 27-59
Keywords Gini coefficient; light at night; remote sensing; economics; development
Abstract The “Lumen Gini Coefficient” is a simple, objective, spatially explicit and globally available empirical measurement of human development derived solely from nighttime satellite imagery and population density. There is increasing recognition that the distribution of wealth and income amongst the population in a nation or region correlates strongly with both the overall happiness of that population and the environmental quality of that nation or region. Measuring the distribution of wealth and income at national and regional scales is an interesting and challenging problem. Gini coefficients derived from Lorenz curves are a well-established method of measuring income distribution. Nonetheless, there are many shortcomings of the Gini coefficient as a measure of income or wealth distribution. Gini coefficients are typically calculated using national level data on the distribution of income through the population. Such data are not available for many countries and the results are generally limited to single values representing entire countries. In this paper we develop an alternative measure of the distribution of “human development”, called the “Lumen Gini coefficient”, that is derived without the use of monetary measures of wealth and is capable of providing a spatial depiction of differences in development within countries.
Address NOAA National Geophysical Data Center, Boulder, Colorado, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1816-1502 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 216
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Sutton, P.C.; Anderson, S.; Baugh, K.E.; Ziskin, D.
Title Satellite Observation of Urban Metabolism Type Journal Article
Year 2011 Publication earthzine Abbreviated Journal
Volume Issue Pages
Keywords Economics
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 437
Permanent link to this record
 

 
Author (up) Ghosh, T.; Anderson, S.; Elvidge, C.; Sutton, P.
Title Using Nighttime Satellite Imagery as a Proxy Measure of Human Well-Being Type Journal Article
Year 2013 Publication Sustainability Abbreviated Journal Sustainability
Volume 5 Issue 12 Pages 4988-5019
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 941
Permanent link to this record
 

 
Author (up) Kamrowski, R.L.; Limpus, C.; Jones, R.; Anderson, S.; Hamann, M.
Title Temporal changes in artificial light exposure of marine turtle nesting areas Type Journal Article
Year 2013 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 20 Issue 8 Pages 2437-2449
Keywords GIS analysis; artificial light; conservation planning; marine turtles; population resilience; temporal change
Abstract Artificial light at night poses a significant threat to multiple taxa across the globe. In coastal regions, artificial lighting close to marine turtle nesting beaches is disruptive to their breeding success. Prioritizing effective management of light pollution requires an understanding of how the light exposure of nesting areas changes over time in response to changing temporal and spatial distributions of coastal development. We analyzed multitemporal, satellite night-light data, in combination with linear mixed model analysis, to determine broadscale changes in artificial light exposure at Australian marine turtle nesting areas between 1993 and 2010. We found seven marine turtle management units (MU), from five species, have experienced significant increases in light exposure over time, with flatback turtles nesting in east Australia experiencing the fastest increases. The remaining 12 MUs showed no significant change in light exposure. Unchanging MUs included those previously identified as having high exposure to light pollution (located in western Australia and southern Queensland), indicating that turtles in these areas have been potentially exposed to high light levels since at least the early nineties. At a finer geographic scale (within-MU), nine MUs contained nesting areas with significant increases in light exposure. These nesting areas predominantly occurred close to heavily industrialized coastal areas, thus emphasizing the importance of rigorous light management in industry. Within all MUs, nesting areas existed where light levels were extremely low and/or had not significantly increased since 1993. With continued coastal development, nesting females may shift to these darker/unchanging 'buffer' areas in the future. This is valuable information that informs our understanding of the capacity and resilience of marine turtles faced with coastal development: an understanding that is essential for effective marine turtle conservation.
Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:24353164 Approved no
Call Number IDA @ john @ Serial 73
Permanent link to this record
 

 
Author (up) Sutton, P.C.; Anderson, S.J.; Elvidge, C.D.; Tuttle, B.T.; Ghosh, T.
Title Paving the planet: impervious surface as proxy measure of the human ecological footprint Type Journal Article
Year 2009 Publication Progress in Physical Geography: Earth and Environment Abbreviated Journal Progress in Physical Geography: Earth and Environment
Volume 33 Issue 4 Pages 510-527
Keywords Remote Sensing
Abstract Fundamental questions regarding the human-environment-sustainability problematic remain contested. What are the relative roles of population, consumption, and technology with respect to sustainability? How can sustainability be measured? Numerous metrics have been developed to address these controversial questions including ideas of carrying capacity, environmental sustainability indices, and ecological footprints. This work explores the question: is pavement a proxy measure of human impact on the environment? We explore and evaluate the use of satellite derived density grids of constructed area (aka ‘pavement’ or ‘impervious surface’) in the calculation of national and subnational ‘ecological footprints’. We generated a global constructed area density grid for the 2000—2001 period using satellite observed nighttime lights and a population count grid from the US Department of Energy. Satellite data inputs to the population product include MODIS landcover, SRTM topography and high-resolution imagery. Calibration of the global constructed area density product was derived from high-resolution aerial photographs. We demonstrate that a satellite derived constructed area per person index can serve as a proxy measure of ecological footprints at both the national and subnational level. This relatively simple and globally uniform measure of human impact on the environment correlates strongly with other more difficult to obtain measures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0309-1333 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2441
Permanent link to this record
 

 
Author (up) Tuttle, B. T., Anderson, S. J., Sutton, P. C., Elvidge, C. D., & Baugh, K.
Title It Used To Be Dark Here Type Journal Article
Year 2013 Publication American Society for Photogrammetry and Remote Sensing Abbreviated Journal
Volume 3 Issue 11 Pages 287-297
Keywords Remote Sensing
Abstract Nighttime satellite imagery from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to observe nocturnal light emissions from sources including cities, wild fires, and gas flares. Data from the DMSP OLS is used in a wide range of studies including mapping urban areas, estimating informal economies, and estimations of population. Given the extensive and increasing list of applications a repeatable method for assessing geolocation accuracy would be beneficial. An array of portable lights was designed and taken to multiple field sites known to have no other light sources. The lights were operated during nighttime overpasses by the DMSP OLS and observed in the imagery. An assessment of the geolocation accuracy was performed by measuring the distance between the GPS measured location of the lights and the observed location in the imagery. A systematic shift was observed and the mean distance was measured at 2.9 km.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2520
Permanent link to this record