|   | 
Details
   web
Records
Author Aubé, M.; Kocifaj, M.
Title Editorial: Special issue on remote sensing of light pollution Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 181 Issue Pages 1
Keywords Commentary
Abstract (up)
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1441
Permanent link to this record
 

 
Author Kinzey, B.R.; Perrin, T.E.; Miller, N.J.; Kocifaj, M.; Aubé, M.; Lamphar, H.A.
Title An investigation of LED street lighting's impact on sky glow Type Journal Article
Year 2017 Publication Abbreviated Journal
Volume PNNL-26411 Issue Pages
Keywords Skyglow; Lighting
Abstract (up) A significant amount of public attention has recently focused on perceived impacts of converting street lighting from incumbent lamp-based products to LED technology. Much of this attention pertains to the higher content of short wavelength light (commonly referred to as “blue light”) of LEDs and its attendant influences on sky glow (a brightening of the night sky that can interfere with astronomical observation and may be associated with a host of other issues). The complexity of this topic leads to common misunderstandings and misperceptions among the public, and for this reason the U.S. Department of Energy Solid-State Lighting Program embarked on a study of sky glow using a well-established astronomical model to investigate some of the primary factors influencing sky glow. This report details the results of the investigation and attempts to present those results in terms accessible to the general lighting community. The report also strives to put the results into a larger context, and help educate interested readers on various topics relevant to the issues being discussed.
Address
Corporate Author Pacific Northwest National Lab. (PNNL), Richland, WA (United States) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2014
Permanent link to this record
 

 
Author Aubé, M.; Kocifaj, M.; Zamorano, J.; Solano Lamphar, H.A.; Sanchez de Miguel, A.
Title The spectral amplification effect of clouds to the night sky radiance in Madrid Type Journal Article
Year 2016 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 181 Issue Pages 11-23
Keywords Skyglow; Madrid; Spain; Europe; artificial light at night; light pollution; clouds; amplification
Abstract (up) Artificial Light at Night (ALAN) may have various environmental impacts ranging from compromising the visibility of astronomical objects to the perturbation of circadian cycles in animals and humans. In the past much research has been carried out to study the impact of ALAN on the radiance of the night sky during clear sky conditions. This was mainly justified by the need for a better understanding of the behavior of ALAN propagation into the environment in order to protect world-class astronomical facilities. More recently, alongside to the threat to the natural starry sky, many issues have emerged from the biological science community. It has been shown that, nearby or inside cities, the presence of cloud cover generally acts as an amplifier for artificial sky radiance while clouds behave as attenuators for remote observers. In this paper we show the spectral behavior of the zenith sky radiance amplification factor exerted by clouds inside a city. We compare in-situ measurements made with the spectrometer SAND-4 with a numerical model applied to the specific geographical context of the Universidad Complutense de Madrid in Spain.
Address Cégep de Sherbrooke, 475 rue du Cégep, Sherbrooke, Canada J1E 4K1; aubema(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1351
Permanent link to this record
 

 
Author Aubé, M.; Roby, J.; Kocifaj, M.
Title Evaluating potential spectral impacts of various artificial lights on melatonin suppression, photosynthesis, and star visibility Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 7 Pages e67798
Keywords Humans; *Light; Lighting/methods; Melatonin/*metabolism; Photosynthesis/*radiation effects; Plant Development/radiation effects; blue light; circadian disruption
Abstract (up) Artificial light at night can be harmful to the environment, and interferes with fauna and flora, star visibility, and human health. To estimate the relative impact of a lighting device, its radiant power, angular photometry and detailed spectral power distribution have to be considered. In this paper we focus on the spectral power distribution. While specific spectral characteristics can be considered harmful during the night, they can be considered advantageous during the day. As an example, while blue-rich Metal Halide lamps can be problematic for human health, star visibility and vegetation photosynthesis during the night, they can be highly appropriate during the day for plant growth and light therapy. In this paper we propose three new indices to characterize lamp spectra. These indices have been designed to allow a quick estimation of the potential impact of a lamp spectrum on melatonin suppression, photosynthesis, and star visibility. We used these new indices to compare various lighting technologies objectively. We also considered the transformation of such indices according to the propagation of light into the atmosphere as a function of distance to the observer. Among other results, we found that low pressure sodium, phosphor-converted amber light emitting diodes (LED) and LED 2700 K lamps filtered with the new Ledtech's Equilib filter showed a lower or equivalent potential impact on melatonin suppression and star visibility in comparison to high pressure sodium lamps. Low pressure sodium, LED 5000 K-filtered and LED 2700 K-filtered lamps had a lower impact on photosynthesis than did high pressure sodium lamps. Finally, we propose these indices as new standards for the lighting industry to be used in characterizing their lighting technologies. We hope that their use will favor the design of new environmentally and health-friendly lighting technologies.
Address Departement de physique, Cegep de Sherbrooke, Sherbrooke, Quebec, Canada. martin.aube@cegepsherbrooke.qc.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23861808; PMCID:PMC3702543 Approved no
Call Number IDA @ john @ Serial 282
Permanent link to this record
 

 
Author Aubé, M.; Kocifaj, M.
Title Using two light-pollution models to investigate artificial sky radiances at Canary Islands observatories: Light-pollution models and artificial sky radiances Type Journal Article
Year 2012 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 422 Issue 1 Pages 819-830
Keywords Keywords: radiative transfer; atmospheric effects; light pollution; methods: observational; site testing
Abstract (up) Astronomical observations are increasingly limited by light pollution, which is a product of the over-illumination of the night sky. To predict both the angular distribution of scattered light and the ground-reaching radiative fluxes, a set of models has been introduced in recent decades. Two distinct numerical tools, MSNsRAu and ILLUMINA, are compared in this paper, with the aim of identifying their strengths and weaknesses. The numerical experiment comprises the simulation of spectral radiances in the region of the Canary Islands. In particular, the light fields near the Roque de los Muchachos and Teide observatories are computed under various turbidity conditions. It is shown that ILLUMINA has enhanced accuracy at low elevation angles. However, ILLUMINA is time-consuming because of the two scattering orders incorporated into the calculation scheme. Under low-turbidity conditions and for zenith angles smaller than 70° the two models agree well, and thus can be successfully applied to typical cloudless situations at the majority of observatories. MSNsRAu is well optimized for large-scale simulations. In particular, the grid size is adapted dynamically depending on the distance between a light source and a hypothetical observer. This enables rapid numerical modelling for large territories. MSNsRAu is also well suited for the mass modelling of night-sky radiances after ground-based light sources are hypothetically changed. This enables an optimum design of public lighting systems and a time-efficient evaluation of the optical effects related to different lamp spectra or different lamp distributions. ILLUMINA provides two diagnostic geographical maps to help local authorities concerned about light-pollution control. The first map allows the identification of the relative contribution of each ground element to the observed sky radiance at a given viewing angle, while the second map gives the sensitivity, basically saying how each ground element contributes per lumen installed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 256
Permanent link to this record
 

 
Author Garcia-Saenz, A.; Sánchez de Miguel, A.; Espinosa, A.; Valentin, A.; Aragonés, N.; Llorca, J.; Amiano, P.; Martín Sánchez, V.; Guevara, M.; Capelo, R.; Tardón, A.; Peiró-Perez, R.; Jiménez-Moleón, J.J.; Roca-Barceló, A.; Pérez-Gómez, B.; Dierssen-Sotos, T.; Fernández-Villa, T.; Moreno-Iribas, C.; Moreno, V.; García-Pérez, J.; Castaño-Vinyals, G.; Pollán, M.; Aubé, M.; Kogevinas, M.
Title Evaluating the Association between Artificial Light-at-Night Exposure and Breast and Prostate Cancer Risk in Spain (MCC-Spain Study) Type Journal Article
Year 2018 Publication Environmental Health Perspectives Abbreviated Journal
Volume 126 Issue 04 Pages
Keywords Human Health; Remote Sensing
Abstract (up) Background: Night shift work, exposure to light at night (ALAN) and circadian disruption may increase the risk of hormone-dependent cancers.

Objectives: We evaluated the association of exposure to ALAN during sleeping time with breast and prostate cancer in a population based multicase–control study (MCC-Spain), among subjects who had never worked at night. We evaluated chronotype, a characteristic that may relate to adaptation to light at night.

Methods: We enrolled 1,219 breast cancer cases, 1,385 female controls, 623 prostate cancer cases, and 879 male controls from 11 Spanish regions in 2008–2013. Indoor ALAN information was obtained through questionnaires. Outdoor ALAN was analyzed using images from the International Space Station (ISS) available for Barcelona and Madrid for 2012–2013, including data of remotely sensed upward light intensity and blue light spectrum information for each geocoded longest residence of each MCC-Spain subject.

Results: Among Barcelona and Madrid participants with information on both indoor and outdoor ALAN, exposure to outdoor ALAN in the blue light spectrum was associated with breast cancer [adjusted odds ratio (OR) for highest vs. lowest tertile, OR=1.47; 95% CI: 1.00, 2.17] and prostate cancer (OR=2.05; 95% CI: 1.38, 3.03). In contrast, those exposed to the highest versus lowest intensity of outdoor ALAN were more likely to be controls than cases, particularly for prostate cancer. Compared with those who reported sleeping in total darkness, men who slept in “quite illuminated” bedrooms had a higher risk of prostate cancer (OR=2.79; 95% CI: 1.55, 5.04), whereas women had a slightly lower risk of breast cancer (OR=0.77; 95% CI: 0.39, 1.51).

Conclusion: Both prostate and breast cancer were associated with high estimated exposure to outdoor ALAN in the blue-enriched light spectrum.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0091-6765 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1871
Permanent link to this record
 

 
Author Aubé, M.
Title Light pollution modeling and detection in a heterogeneous environment Type Journal Article
Year 2007 Publication Proceedings of Starlight 2007 conference. La Palma, Spain. Abbreviated Journal
Volume Issue Pages
Keywords Skyglow
Abstract (up) Few attempts have been made to measure aerosol optical depth (AOD) behaviour

during the night. One such method uses spectrally calibrated stars as reference targets

but the available number of stars is limited. This is especially true for urban sites where

artificial lighting hide most of these stars. In our research we attempt to provide an

alternate method one which exploits the artificial sky glow generated by light pollution.

To achieve that goal, we designed a new methodology which links a 3D light

pollution model with in situ light pollution spectral measurements obtained with our

detector called Spectrometer for aerosol night detection (SAND). The basic idea was to

adjust an AOD value into the model in order to fit the measured artificial sky brightness.

This method requires an accurate model that includes spatial heterogeneity in lighting

angular geometry, in lighting spectral dependence, in ground spectral reflectance and

in topography along with a detailed definition of the vertical atmospheric profile. This

model, named ILLUMINA, computes 1st and 2nd order molecular and aerosol scattering

as well as aerosol absorption. A correction for sub grid obstacles is also included.

These model features represent major improvements to previous light pollution models.

Therefore, new possibilities for light pollution studies will arise, many of which are of

particular interest to the astronomical community. In this paper we will present model

and detector features and some of the first results derived from ILLUMINA model. We

will also present our web based spatio-temporal Sky spectral luminance measurements

database project.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 552
Permanent link to this record
 

 
Author Aubé, M.; Simoneau, A.
Title New features to the night sky radiance model illumina: Hyperspectral support, improved obstacles and cloud reflection Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 211 Issue Pages 25-34
Keywords
Abstract (up) Illumina is one of the most physically detailed artificial night sky brightness model to date. It has been in continuous development since 2005 [1]. In 2016–17, many improvements were made to the Illumina code including an overhead cloud scheme, an improved blocking scheme for subgrid obstacles (trees and buildings), and most importantly, a full hyperspectral modeling approach. Code optimization resulted in significant reduction in execution time enabling users to run the model on standard personal computers for some applications.

After describing the new schemes introduced in the model, we give some examples of applications for a peri-urban and a rural site both located inside the International Dark Sky reserve of Mont-Mégantic (QC, Canada).
Address Cégep de Sherbrooke, 475, rue du Cégep, Sherbrooke, Québec J1E 4K1, Canada; martin.aube(at)cegepsherbrooke.qc.ca
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1818
Permanent link to this record
 

 
Author Aubé, M.; Roby, J.
Title Sky brightness levels before and after the creation of the first International Dark Sky Reserve, Mont-Mégantic Observatory, Québec, Canada Type Journal Article
Year 2014 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal JQSRT
Volume 139 Issue Pages 52-63
Keywords Skyglow; measurements; metrology; Mont-Mégantic; Quebec; Canada; modelling; radiative transfer; sky quality; sky brightness
Abstract (up) In 2007, the area around the Mont-Mégantic Observatory (MMO) was officially certified by the International Dark-Sky Association and the Royal Astronomy Association of Canada as the first International Dark Sky Reserve (IDSR). In order to be able to investigate the impact of Artificial Light at Night on night sky brightness before and after the establishment of the IDSR, we used a heterogeneous artificial sky brightness model including an implicit calculation of 2nd order scattering (ILLUMINA) developed by Martin Aubé's group. This model generates three kinds of outputs: the sky radiance at the given site, observing angle and wavelength and the corresponding contribution and sensitivity maps. The maps allow for the identification of the origin of the sky radiance according to each part of the surrounding territory. For summer clear sky conditions, the results show that replacing light fixtures within a 25 km radius around the MMO with cut-off High Pressure Sodium devices and reducing the total installed radiant power to ~40% of its initial level are very efficient ways of reducing artificial sky brightness. The artificial sky brightness reduction at zenith observed after the establishment of the IDSR was ~50% in the 546 nm mercury spectral line, while the reduction obtained in the 569 nm sodium line was ~30%. A large part of that reduction can be associated to the reduction in radiant power. The contribution and sensitivity maps highlight critical zones where any changes in the lighting infrastructure have the most important impact on sky brightness at the MMO. Contribution and sensitivity maps have been used to analyze the detailed origin of sky brightness reduction. The results of this study are intended to support authorities in the management of their lighting infrastructure with the goal of reducing sky brightness. The results have been shared with MMO officials and are being used as a tool to improve sky quality at the observatory.
Address Tel.: +1 819 564 6350x4146.
Corporate Author Thesis
Publisher ScienceDirect Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1099
Permanent link to this record
 

 
Author Aubé, M.; Fortin, N.; Turcotte, S.; García, B.; Mancilla, A.; Maya, J.
Title Evaluation of the Sky Brightness at Two Argentinian Astronomical Sites Type Journal Article
Year 2014 Publication Publications of the Astronomical Society of the Pacific Abbreviated Journal Publications of the Astronomical Society of the Pacific
Volume Issue Pages 000-000
Keywords Skyglow; light pollution; astronomical observatories; sky brightness; site selection; LEO ++; El Leoncito; Kitt Peak; Mont-Mégantic; Argentina
Abstract (up) Light pollution is a growing concern at many levels, especially for the astronomical community. Indeed, not only does artificial lighting veil celestial objects, it disturbs the measurement of many atmospheric phenomena. The sky brightness is one of the most relevant parameters for astronomical site selection. Our goal is to evaluate the sky brightness of two Argentinian observation sites: LEO ++ and El Leoncito. Both sites were preselected to host the Cherenkov Telescope Array. This project consists of an arrangement of many telescopes that can measure high-energy gamma ray emissions via their Cherenkov radiation produced when entering the earth’s atmosphere. In this paper, we describe the measurement methods used to determine whether those sites are valuable or not. We compared our results with the sky radiance of different renowned astronomical sites (Kitt Peak, Arizona, and Mont-Mégantic, Québec, Canada). Among our results, we found that LEO ++ is a good site, however the presence of a low layer of local aerosol can introduce uncertainties in the measurements. Consequently, El Leoncito would be a better option for such an installation. This latter site shows very low sky brightness levels, which are optimal for low light detection.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-6280 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1071
Permanent link to this record