toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Cao, C.; Bai, Y. url  doi
openurl 
  Title Quantitative Analysis of VIIRS DNB Nightlight Point Source for Light Power Estimation and Stability Monitoring Type Journal Article
  Year 2014 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 6 Issue 12 Pages 11915-11935  
  Keywords Remote Sensing; light pollution; skyglow; VIIRS; VIIRS DNB; Suomi NPP; radiometry; radiative transfer; modelling  
  Abstract The high sensitivity and advanced onboard calibration on the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) enables accurate measurements of low light radiances which leads to enhanced quantitative applications at night. The finer spatial resolution of DNB also allows users to examine social economic activities at urban scales. Given the growing interest in the use of the DNB data, there is a pressing need for better understanding of the calibration stability and absolute accuracy of the DNB at low radiances. The low light calibration accuracy was previously estimated at a moderate 15% using extended sources while the long-term stability has yet to be characterized. There are also several science related questions to be answered, for example, how the Earth’s atmosphere and surface variability contribute to the stability of the DNB measured radiances; how to separate them from instrument calibration stability; whether or not SI (International System of Units) traceable active light sources can be designed and installed at selected sites to monitor the calibration stability, radiometric and geolocation accuracy, and point spread functions of the DNB; furthermore, whether or not such active light sources can be used for detecting environmental changes, such as aerosols. This paper explores the quantitative analysis of nightlight point sources, such as those from fishing vessels, bridges, and cities, using fundamental radiometry and radiative transfer, which would be useful for a number of applications including search and rescue in severe weather events, as well as calibration/validation of the DNB. Time series of the bridge light data are used to assess the stability of the light measurements and the calibration of VIIRS DNB. It was found that the light radiant power computed from the VIIRS DNB data matched relatively well with independent assessments based on the in situ light installations, although estimates have to be made due to limited ground truth data and lack of suitable radiative transfer models. Results from time series analysis are encouraging in potentially being able to detect anomalies in the DNB calibration. The study also suggests that accurate ground based active lights, when properly designed and installed, can be used to monitor the stability of the VIIRS DNB calibration at near the specified minimum radiances (3 nW/cm^2/sr), and potentially can be used to monitor the environmental changes as well.  
  Address NOAA (National Oceanic and Atmospheric Administration)/NESDIS (National Environmental Satellite, Data, and Information Service)/STAR (Center for Satellite Applications and Research), NCWCP, E/RA2, 5830 University Research Ct., Suite 2838, College Park, MD 20740, USA; Changyong.Cao@noaa.gov  
  Corporate Author Thesis  
  Publisher MDPI Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1154  
Permanent link to this record
 

 
Author (up) Cao, C.; Zong, Y.; Bai, Y.; Shao, X. url  doi
openurl 
  Title Preliminary study for improving the VIIRS DNB low light calibration accuracy with ground based active light source Type Journal Article
  Year 2015 Publication Proc. SPIE 9607, Earth Observing Systems XX, 2015 Abbreviated Journal  
  Volume Issue Pages 96070D  
  Keywords Remote sensing; Suomi NPP; VIIRS DNB; calibration  
  Abstract There is a growing interest in the science and user community in the Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) low light detection capabilities at night for quantitative applications such as airglow, geophysical retrievals under lunar illumination, light power estimation, search and rescue, energy use, urban expansion and other human activities. Given the growing interest in the use of the DNB data, a pressing need arises for improving the calibration stability and absolute accuracy of the DNB at low radiances. Currently the low light calibration accuracy was estimated at a moderate 15%-100% while the long-term stability has yet to be characterized. This study investigates selected existing night light point sources from Suomi NPP DNB observations and evaluates the feasibility of SI traceable nightlight source at radiance levels near 3 nW·cm−2·sr−1, that potentially can be installed at selected sites for VIIRS DNB calibration/validation. The illumination geometry, surrounding environment, as well as atmospheric effects are also discussed. The uncertainties of the ground based light source are estimated. This study will contribute to the understanding of how the Earth’s atmosphere and surface variability contribute to the stability of the DNB measured radiances, and how to separate them from instrument calibration stability. It presents the need for SI traceable active light sources to monitor the calibration stability, radiometric and geolocation accuracy, and point spread functions of the DNB. Finally, it is also hoped to address whether or not active light sources can be used for detecting environmental changes, such as aerosols.  
  Address NESDIS/STAR, National Oceanic and Atmospheric Administration, USA  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1261  
Permanent link to this record
 

 
Author (up) Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; Zhou, Y. url  doi
openurl 
  Title Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 Type Journal Article
  Year 2020 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 236 Issue Pages in press  
  Keywords Remote Sensing  
  Abstract Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km2 in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2756  
Permanent link to this record
 

 
Author (up) Wang, W.; Cao, C.; Bai, Y.; Blonski, S.; Schull, M. url  doi
openurl 
  Title Assessment of the NOAA S-NPP VIIRS Geolocation Reprocessing Improvements Type Journal Article
  Year 2017 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 9 Issue 10 Pages 974  
  Keywords Remote Sensing  
  Abstract Long-term time series analysis requires consistent data records from satellites. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National Polar orbiting Partner (S-NPP) satellite launched in 2011 requires a major effort to produce consistently calibrated sensor data records (SDR). Accurate VIIRS geolocation products are critical to other VIIRS products and products from other instruments on the S-NPP satellite. This paper presents methods for assessing major improvements to the VIIRS geolocation products in the ongoing National Oceanic and Atmospheric Administration (NOAA)/Center for Satellite Applications and Research (STAR) reprocessing that incorporates all corrections in calibration parameters and SDR algorithms since launch to present. In this study, we analyzed the history of VIIRS geometric calibration parameter updates to identify optimal parameters to account for geolocation errors in the early days of the mission. A sample area located in North Western Africa was selected for validation purposes after analyzing global VIIRS and Landsat control point matching results. Geolocation products over the study region were reprocessed and I-bands/M-bands geolocation improvements were characterized by comparing geolocation errors before and after the reprocessing. Our results indicate that all short-term geolocation anomalies before the latest operational geometric calibration parameter update on 22 August 2013 were effectively minimized after reprocessing, with geolocation errors reduced from −47.1 ± 83.8 m to −23.3 ± 51.1 m (along scan) and from −15.6 ± 43.6 m to −5.9 ± 37.7 m (along track). Terrain correction for the VIIRS Day-Night-Band (DNB) was not implemented in the NOAA operational processing until 22 May 2015. In the reprocessing, it will be implemented to the entire DNB geolocation data record. DNB reprocessing improvement due to this implementation was evaluated using nighttime observations over point sources at sea level and over high altitude. Our results show that the implementation of terrain correction will reduce DNB geolocation errors at off-nadir high elevation locations from up to 9 km to ~0.5 pixel (0.375 km), comparable to those at sea level site. The reprocessed geolocation dataset will be distributed online for end-users to access.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1737  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: