|   | 
Details
   web
Records
Author (down) Sánchez de Miguel, A.; Bará, S.; Aubé, M.; Cardiel, N.; Tapia, C.E.; Zamorano, J.; Gaston, K.J.
Title Evaluating Human Photoreceptoral Inputs from Night-Time Lights Using RGB Imaging Photometry Type Journal Article
Year 2019 Publication Journal of Imaging Abbreviated Journal J. Imaging
Volume 5 Issue 4 Pages 49
Keywords Human Health; Remote Sensing; Instrumentation
Abstract Night-time lights interact with human physiology through different pathways starting at the retinal layers of the eye; from the signals provided by the rods; the S-, L- and M-cones; and the intrinsically photosensitive retinal ganglion cells (ipRGC). These individual photic channels combine in complex ways to modulate important physiological processes, among them the daily entrainment of the neural master oscillator that regulates circadian rhythms. Evaluating the relative excitation of each type of photoreceptor generally requires full knowledge of the spectral power distribution of the incoming light, information that is not easily available in many practical applications. One such instance is wide area sensing of public outdoor lighting; present-day radiometers onboard Earth-orbiting platforms with sufficient nighttime sensitivity are generally panchromatic and lack the required spectral discrimination capacity. In this paper, we show that RGB imagery acquired with off-the-shelf digital single-lens reflex cameras (DSLR) can be a useful tool to evaluate, with reasonable accuracy and high angular resolution, the photoreceptoral inputs associated with a wide range of lamp technologies. The method is based on linear regressions of these inputs against optimum combinations of the associated R, G, and B signals, built for a large set of artificial light sources by means of synthetic photometry. Given the widespread use of RGB imaging devices, this approach is expected to facilitate the monitoring of the physiological effects of light pollution, from ground and space alike, using standard imaging technology.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2313-433X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2294
Permanent link to this record
 

 
Author (down) Kocifaj, M.; Bará, S.
Title Two-index model for characterizing site-specific night sky brightness patterns Type Journal Article
Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 490 Issue 2 Pages 1953-1960
Keywords Skyglow
Abstract The determination of the all-sky radiance distribution produced by artificial light sources is a computationally demanding task that generally requires intensive calculations. In this paper, we develop an analytical formulation that provides the all-sky radiance distribution produced by an artificial light source as an explicit and analytical function of the observation direction, depending on two single parameters that characterize the overall effects of the atmosphere. One of these parameters is related to the effective attenuation of the light beams, whereas the other accounts for the overall asymmetry of the combined scattering processes in molecules and aerosols. Using this formulation, a wide range of all-sky radiance distributions can be efficiently and accurately calculated in a short time. This substantial reduction in the number of required parameters, in comparison with other approaches that are currently used, is expected to facilitate the development of new applications in the field of light pollution research.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2704
Permanent link to this record
 

 
Author (down) Ges, X.; Bará, S.; García-Gil, M.; Zamorano, J.; Ribas, S.J.; Masana, E.
Title Light pollution offshore: Zenithal sky glow measurements in the mediterranean coastal waters Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 210 Issue Pages 91-100
Keywords
Abstract Light pollution is a worldwide phenomenon whose consequences for the natural environment and the human health are being intensively studied nowadays. Most published studies address issues related to light pollution inland. Coastal waters, however, are spaces of high environmental interest, due to their biodiversity richness and their economical significance. The elevated population density in coastal regions is accompanied by correspondingly large emissions of artificial light at night, whose role as an environmental stressor is increasingly being recognized. Characterizing the light pollution levels in coastal waters is a necessary step for protecting these areas. At the same time, the marine surface environment provides a stage free from obstacles for measuring the dependence of the skyglow on the distance to the light polluting sources, and validating (or rejecting) atmospheric light propagation models. In this work we present a proof-of-concept of a gimbal measurement system that can be used for zenithal skyglow measurements on board both small boats and large vessels under actual navigation conditions. We report the results obtained in the summer of 2016 along two measurement routes in the Mediterranean waters offshore Barcelona, travelling 9 and 31.7 km away from the coast. The atmospheric conditions in both routes were different from the ones assumed for the calculation of recently published models of the anthropogenic sky brightness. They were closer in the first route, whose results approach better the theoretical predictions. The results obtained in the second route, conducted under a clearer atmosphere, showed systematic differences that can be traced back to two expected phenomena, which are a consequence of the smaller aerosol content: the reduction of the anthropogenic sky glow at short distances from the sources, and the slower decay rate of brightness with distance, which gives rise to a relative excess of brightness at large distances from the coastline.
Address Departament de Projectes d'Enginyeria i la Construcció, Universitat Politècnica de Catalunya/BARCELONATECH, Barcelona, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Elsevierier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1816
Permanent link to this record
 

 
Author (down) Estrada-García, R.; Garcí­a-Gil, M.; Acosta, L.; Bará, S.; Sanchez de Miguel, A.; Zamorano, J.
Title Statistical modelling and satellite monitoring of upward light from public lighting Type Journal Article
Year 2015 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.
Volume Issue 1477153515583181 Pages 1-30
Keywords Remote sensing; radiative transfer; modeling; skyglow; light pollution; urban
Abstract In this work, we propose an approach to estimating the amount of light wasted by being sent towards the upper hemisphere from urban areas. This is a source of light pollution. The approach is based on a predictive model that provides the fraction of light directed skywards in terms of a small set of identified explanatory variables that characterise the urban landscape and its light sources. The model, built via the statistical analysis of a wide sample of basic urban scenarios to compute accurately the amount of light wasted at each of them, establishes an optimal linear regression function that relates the fraction of wasted flux to relevant variables like the kind of luminaires, the street fill factor, the street width, the building and luminaire heights and the walls and pavement reflectances. We applied this model to evaluate the changes in emissions produced at two urban nuclei in the Deltebre municipality of Catalonia. The results agree reasonably well with those deduced from the radiance measurements made with the VIIRS instrument onboard the Suomi-NPP Earth orbiting satellite.
Address Escola Tècnica Superior d’Enginyeria Industrial de Barcelona (ETSEIB), Universitat Politècnica de Catalunya, Spain; manuel.garcia.gil(at)upc.edu
Corporate Author Thesis
Publisher Sage Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1155
Permanent link to this record
 

 
Author (down) Escofet, J.; Bará, S.
Title Reducing the circadian input from self-luminous devices using hardware filters and software applications Type Journal Article
Year 2015 Publication Lighting Research and Technology Abbreviated Journal Lighting Res. & Tech.
Volume 49 Issue 4 Pages 481-496
Keywords Lighting; devices; circadian disruption; screens; self-luminous
Abstract The widespread use of self-luminous devices at nighttime (cell-phones, computers, and tablets) raises some reasonable concerns regarding their effects on human physiology. Light at night is a known circadian disruptor, particularly at short visible wavelengths, and it seems advisable to have practical tools for tailoring the spectral radiance of these displays. We analyse two possible strategies to achieve this goal, using hardware filters or software applications. Overall, software applications seem to offer, at the present time, the best trade-offs for controlling the light spectra emitted by existing devices. We submit that such tools should be included as a standard feature on any self-luminous device and that their default settings should be established according to the best available knowledge on the circadian effects of light.
Address Departament d'Òptica i Optometria, Universitat Politècnica de Catalunya, Terrassa, Catalunya, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1315
Permanent link to this record
 

 
Author (down) Bará, S.; Tilve, V.; Nievas, M.; Sanchez de Miguel, A.; Zamorano, J.
Title Zernike power spectra of clear and cloudy light-polluted urban night skies Type Journal Article
Year 2015 Publication Applied Optics Abbreviated Journal Appl. Opt.
Volume 54 Issue 13 Pages 4120-4129
Keywords Skyglow; artificial ligh at night; light pollution; Zernike; power spectrum; atmospheric optics; imaging systems; image analysis
Abstract The Zernike power spectra of the all-sky night brightness distributions of clear and cloudy nights are computed using a modal projection approach. The results obtained in the B, V and R Johnson-Cousins' photometric bands during a one-year campaign of observations at a light-polluted urban site show that these spectra can be described by simple power laws with exponents close to -3 for clear nights and -2 for cloudy ones. The second-moment matrices of the Zernike coefficients show relevant correlations between modes. The multiplicative role of the cloud cover, that contributes to a significant increase of the brightness of the urban night sky in comparison with the values obtained in clear nights, is described in the Zernike space.
Address Area de Optica, Dept. Fisica Aplicada. Facultade de Fisica / Facultade de Optica e Optometría Universidade de Santiago de Compostela Campus Sur, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara@usc.es
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1156
Permanent link to this record
 

 
Author (down) Bará, S.; Tapia, C.; Zamorano, J.
Title Absolute Radiometric Calibration of TESS-W and SQM Night Sky Brightness Sensors Type Journal Article
Year 2019 Publication Sensors Abbreviated Journal Sensors
Volume 19 Issue 6 Pages 1336
Keywords Instrumentation; calibration; SQM; TESS; photometer; sky brightness
Abstract We develop a general optical model and describe the absolute radiometric calibration of the readings provided by two widely-used night sky brightness sensors based on irradiance-to-frequency conversion. The calibration involves the precise determination of the overall spectral sensitivity of the devices and also the constant G relating the output frequency of the light-to-frequency converter chip to the actual band-weighted and field-of-view averaged spectral radiance incident on the detector (brightness). From these parameters, we show how to define a rigorous astronomical absolute photometric system in which the sensor measurements can be reported in units of magnitudes per square arcsecond with precise physical meaning.
Address Departmento Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2263
Permanent link to this record
 

 
Author (down) Bará, S.; Rodríguez-Arós, Á.; Pérez, M.; Tosar, B.; Lima, R.; Sánchez de Miguel, A.; Zamorano, J.
Title Estimating the relative contribution of streetlights, vehicles, and residential lighting to the urban night sky brightness Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Res & Tech
Volume Issue October 2018 Pages
Keywords Remote Sensing; traffic; Roadway lighting
Abstract Under stable atmospheric conditions the brightness of the urban sky varies throughout the night following the time course of the anthropogenic emissions of light. Different types of artificial light sources (e.g. streetlights, residential, and vehicle lights) have specific time signatures, and this feature makes it possible to estimate the amount of brightness contributed by each of them. Our approach is based on transforming the time representation of the zenithal night sky brightness into a modal expansion in terms of the time signatures of the different sources of light. The modal coefficients, and hence the absolute and relative contributions of each type of source, can be estimated by means of a linear least squares fit. A practical method for determining the time signatures of different contributing sources is also described, based on wide-field time-lapse photometry of the urban nightscape. Our preliminary results suggest that, besides the dominant streetlight contribution, artificial light leaking out of the windows of residential buildings may account for a significant share of the time-varying part of the zenithal night sky brightness at the measurement locations, whilst the contribution of the vehicle lights seems to be significantly smaller.
Address Área de Óptica, Dept. Física Aplicada, Facultade de Óptica e Optometría, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Galicia, Spain. salva.bara(at)usc.es
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2052
Permanent link to this record
 

 
Author (down) Bará, S.; Rigueiro, I.; Lima, R.C.
Title Monitoring transition: Expected night sky brightness trends in different photometric bands Type Journal Article
Year 2019 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 239 Issue Pages 106644
Keywords Skyglow; Remote Sensing; Instrumentation
Abstract Several light pollution indicators are commonly used to monitor the effects of the transition from outdoor lighting systems based on traditional gas-discharge lamps to solid-state light sources. In this work we analyze a subset of these indicators, including the artificial zenithal night sky brightness in the visual photopic and scotopic bands, the brightness in the specific photometric band of the widely used Sky Quality Meter (SQM), and the top-of-atmosphere radiance detected by the VIIRS-DNB radiometer onboard the satellite Suomi-NPP. Using a single-scattering approximation in a layered atmosphere we quantitatively show that, depending on the transition scenarios, these indicators may show different, even opposite behaviors. This is mainly due to the combined effects of the changes in the sources' spectra and angular radiation patterns, the wavelength-dependent atmospheric propagation processes and the differences in the detector spectral sensitivity bands. It is suggested that the possible presence of this differential behavior should be taken into account when evaluating light pollution indicator datasets for assessing the outcomes of public policy decisions regarding the upgrading of outdoor lighting systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2810
Permanent link to this record
 

 
Author (down) Bará, S.; Ribas, S.; Kocifaj, M.
Title Modal evaluation of the anthropogenic night sky brightness at arbitrary distances from a light source Type Journal Article
Year 2015 Publication Journal of Optics Abbreviated Journal J. of Optics
Volume 17 Issue Pages 105607
Keywords Skyglow; light propagation, atmospheric optics, light pollution
Abstract The artificial emissions of light contribute to a high extent to the observed brightness of the night sky in many places of the world. Determining the all-sky radiance of anthropogenic origin requires solving the radiative transfer equation for ground-level light sources, generally resorting to a double-scattering approximation in order to account for the observed radiance patterns with a reasonable degree of accuracy. Since the all-sky radiance distribution produced by an elementary light source depends on the distance to the observer in a way that is not immediately obvious, the contributions of sources located at different distances have to be computed on an individual basis, solving for each one the corresponding scattering integrals. In this paper we show that these calculations may be significantly alleviated by using a modal approach, whereby the hemispheric night-sky radiance is expanded in terms of a convenient basis of two-dimensional (2D) orthogonal functions. Since the modal coefficients of this expansion do vary smoothly with the distance to the observer, the all-sky brightness distributions produced by light sources located at arbitrary intermediate distances can be efficiently estimated by interpolation, provided that the coefficients at a discrete set of distances are accurately determined beforehand.
Address Area de Optica, Universidade de Santiago de Compostela Campus Sur, E-15782, Santiago de Compostela, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher IOP Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2040-8986 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1235
Permanent link to this record