|   | 
Details
   web
Records
Author Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M.
Title (up) A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data Type Journal Article
Year 2009 Publication Energies Abbreviated Journal Energies
Volume 2 Issue 3 Pages 595-622
Keywords
Abstract We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP). Gas flaring is a widely used practice for the disposal of associated gas in oil production and processing facilities where there is insufficient infrastructure for utilization of the gas (primarily methane). Improved utilization of the gas is key to reducing global carbon emissions to the atmosphere. The DMSP estimates of flared gas volume are based on a calibration developed with a pooled set of reported national gas flaring volumes and data from individual flares. Flaring efficiency was calculated as the volume of flared gas per barrel of crude oil produced. Global gas flaring has remained largely stable over the past fifteen years, in the range of 140 to 170 billion cubic meters (BCM). Global flaring efficiency was in the seven to eight cubic meters per barrel from 1994 to 2005 and declined to 5.6 m3 per barrel by 2008. The 2008 gas flaring estimate of 139 BCM represents 21% of the natural gas consumption of the USA with a potential retail market value of $68 billion. The 2008 flaring added more than 278 million metric tons of carbon dioxide equivalent (CO2e) into the atmosphere. The DMSP estimated gas flaring volumes indicate that global gas flaring has declined by 19% since 2005, led by gas flaring reductions in Russia and Nigeria, the two countries with the highest gas flaring levels. The flaring efficiency of both Russia and Nigeria improved from 2005 to 2008, suggesting that the reductions in gas flaring are likely the result of either improved utilization of the gas, reinjection, or direct venting of gas into the atmosphere, although the effect of uncertainties in the satellite data cannot be ruled out. It is anticipated that the capability to estimate gas flaring volumes based on satell
Address gas flaring; carbon emissions; nighttime lights; DMSP-OLS; remote sensing; light at night; satellite
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 231
Permanent link to this record
 

 
Author Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E.
Title (up) A global poverty map derived from satellite data Type Journal Article
Year 2009 Publication Computers & Geosciences Abbreviated Journal Computers & Geosciences
Volume 35 Issue 8 Pages 1652-1660
Keywords Poverty; DMSP; Nighttime lights; World development indicators; light pollution
Abstract A global poverty map has been produced at 30 arcsec resolution using a poverty index calculated by dividing population count (LandScan 2004) by the brightness of satellite observed lighting (DMSP nighttime lights). Inputs to the LandScan product include satellite-derived land cover and topography, plus human settlement outlines derived from high-resolution imagery. The poverty estimates have been calibrated using national level poverty data from the World Development Indicators (WDI) 2006 edition. The total estimate of the numbers of individuals living in poverty is 2.2 billion, slightly under the WDI estimate of 2.6 billion. We have demonstrated a new class of poverty map that should improve over time through the inclusion of new reference data for calibration of poverty estimates and as improvements are made in the satellite observation of human activities related to economic activity and technology access.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0098-3004 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 123
Permanent link to this record
 

 
Author Duriscoe, D.M.; Anderson, S.J.; Luginbuhl, C.B.; Baugh, K.E.
Title (up) A simplified model of all-sky artificial sky glow derived from VIIRS Day/Night band data Type Journal Article
Year 2018 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 214 Issue Pages 133-145
Keywords Skyglow; Remote Sensing
Abstract We present a simplified method using geographic analysis tools to predict the average artificial luminance over the hemisphere of the night sky, expressed as a ratio to the natural condition. The VIIRS Day/Night Band upward radiance data from the Suomi NPP orbiting satellite was used for input to the model. The method is based upon a relation between sky glow brightness and the distance from the observer to the source of upward radiance. This relationship was developed using a Garstang radiative transfer model with Day/Night Band data as input, then refined and calibrated with ground-based all-sky V-band photometric data taken under cloudless and low atmospheric aerosol conditions. An excellent correlation was found between observed sky quality and the predicted values from the remotely sensed data. Thematic maps of large regions of the earth showing predicted artificial V-band sky brightness may be quickly generated with modest computing resources. We have found a fast and accurate method based on previous work to model all-sky quality. We provide limitations to this method. The proposed model meets requirements needed by decision makers and land managers of an easy to interpret and understand metric of sky quality.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1879
Permanent link to this record
 

 
Author Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.
Title (up) Mapping city lights with night-time data from the DMSP operational linescan system. Type Journal Article
Year 1997 Publication Photogrammetric Engineering and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing
Volume 63 Issue 6 Pages 727-734
Keywords Remote Sensing
Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to detect low levels of visible and near-infrared (VNIR) radiance at

night. With the OLS “VIS” band data, it is possible to detect clouds illuminated by moonlight, plus lights from cities, towns, industrial sites, gas pares, and ephemeral events such as fires and lightning illuminated clouds. This paper presents methods which have been developed for detecting and geolocating VNIR emission sources with nighttime DMSP-OLS data and the analysis of image time series to identify spatially stable emissions from cities, towns, and industrial sites. Results are presented for the United States.
Address Desert Research Institute, University of Nevada System, Reno, NV 89506 and the Solar-Terrestrial Physics Division, National Oceanic and Atmospheric Administration, National Geophysical Data Center, 325 Broadway, Boulder, CO 80303; cde(at)ngdc.noaa.gov
Corporate Author Thesis
Publisher American Society for Photogrammetry and Remote Sensing Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 497
Permanent link to this record
 

 
Author Elvidge, C.D.; Imhoff, M.L.; Baugh, K.E.; Hobson, V.R.; Nelson, I.; Safran, J.; Dietz, J.B.; Tuttle, B.T.
Title (up) Night-time lights of the world: 1994–1995 Type Journal Article
Year 2001 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing
Volume 56 Issue 2 Pages 81-99
Keywords Remote Sensing
Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique low-light imaging capability developed for the detection of clouds using moonlight. In addition to moonlit clouds, the OLS also detects lights from human settlements, fires, gas flares, heavily lit fishing boats, lightning and the aurora. By analysing the location, frequency, and appearance of lights observed in an image time series, it is possible to distinguish four primary types of lights present at the earth's surface: human settlements, gas flares, fires, and fishing boats. We have produced a global map of the four types of light sources as observed during a 6-month time period in 1994–1995. We review a number of environmental applications that have been developed or proposed based on the night-time light data. We examine the relationship between area of lighting, population, economic activity, electric power consumption, and energy related carbon emissions for 200 nations, representing 99% of the world's population.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-2716 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2009
Permanent link to this record
 

 
Author Elvidge, C. D.; Erwin, E.H.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T.; Ghosh, T.; Sutton, P.C.
Title (up) Overview of DMSP nightime lights and future possibilities Type Conference Article
Year 2009 Publication Joint Urban Remote Sensing Event Abbreviated Journal
Volume Issue Pages
Keywords Remote Sensing; DMSP; DMSP-OLS; Night lights
Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to collect low-light imaging data of the earth at night. The OLS and its predecessors have collected this style of data on a nightly global basis since 1972. The digital archive of OLS data extends back to 1992. Over the years several global nighttime lights products have been generated. NGDC has now produced a set of global cloud-free nighttime lights products, specifically processed for the detection of changes in lighting emitted by human settlements, spanning 1992-93 to 2008. While the OLS is far from ideal for observing nighttime lights, the DMSP nighttime lights products have been successfully used in modeling the spatial distribution of population density, carbon emissions, and economic activity.
Address Earth Observation Group NOAA National Geophysical Data Center Boulder, Colorado 80305 USA; chris.elvidge(at)noaa.gov
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2334-0932 ISBN 978-1-4244-3461-9 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2668
Permanent link to this record
 

 
Author Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W.
Title (up) Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption Type Journal Article
Year 1997 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 18 Issue 6 Pages 1373-1379
Keywords Energy
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 741
Permanent link to this record
 

 
Author Elvidge, C.D.; Sutton, P.C.; Anderson, S.; Baugh, K.E.; Ziskin, D.
Title (up) Satellite Observation of Urban Metabolism Type Journal Article
Year 2011 Publication earthzine Abbreviated Journal
Volume Issue Pages
Keywords Economics
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 437
Permanent link to this record
 

 
Author Elvidge, C.D.; Keith, D.M.; Tuttle, B.T.; Baugh, K.E.
Title (up) Spectral identification of lighting type and character Type Journal Article
Year 2010 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)
Volume 10 Issue 4 Pages 3961-3988
Keywords Led; Nightsat; lighting efficiency; lighting types; nighttime lights; photopic band
Abstract We investigated the optimal spectral bands for the identification of lighting types and the estimation of four major indices used to measure the efficiency or character of lighting. To accomplish these objectives we collected high-resolution emission spectra (350 to 2,500 nm) for forty-three different lamps, encompassing nine of the major types of lamps used worldwide. The narrow band emission spectra were used to simulate radiances in eight spectral bands including the human eye photoreceptor bands (photopic, scotopic, and “meltopic”) plus five spectral bands in the visible and near-infrared modeled on bands flown on the Landsat Thematic Mapper (TM). The high-resolution continuous spectra are superior to the broad band combinations for the identification of lighting type and are the standard for calculation of Luminous Efficacy of Radiation (LER), Correlated Color Temperature (CCT) and Color Rendering Index (CRI). Given the high cost that would be associated with building and flying a hyperspectral sensor with detection limits low enough to observe nighttime lights we conclude that it would be more feasible to fly an instrument with a limited number of broad spectral bands in the visible to near infrared. The best set of broad spectral bands among those tested is blue, green, red and NIR bands modeled on the band set flown on the Landsat Thematic Mapper. This set provides low errors on the identification of lighting types and reasonable estimates of LER and CCT when compared to the other broad band set tested. None of the broad band sets tested could make reasonable estimates of Luminous Efficacy (LE) or CRI. The photopic band proved useful for the estimation of LER. However, the three photoreceptor bands performed poorly in the identification of lighting types when compared to the bands modeled on the Landsat Thematic Mapper. Our conclusion is that it is feasible to identify lighting type and make reasonable estimates of LER and CCT using four or more spectral bands with minimal spectral overlap spanning the 0.4 to 1.0 um region.
Address Earth Observation Group, Solar and Terrestrial Division, NOAA National Geophysical Data Center, 325 Broadway, Boulder, CO 80305, USA. chris.elvidge@noaa.gov
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1424-8220 ISBN Medium
Area Expedition Conference
Notes PMID:22319336; PMCID:PMC3274255 Approved no
Call Number IDA @ john @ Serial 275
Permanent link to this record
 

 
Author Cinzano, P.; Falchi, F.; Elvidge, C.D.; Baugh, K.E.
Title (up) The artificial night sky brightness mapped from DMSP satellite Operational Linescan System measurements Type Journal Article
Year 2000 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 318 Issue 3 Pages 641-657
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kagoburian @ Serial 976
Permanent link to this record