|   | 
Details
   web
Records
Author (up) Elvidge, C. D.; Erwin, E.H.; Baugh, K.E.; Ziskin, D.; Tuttle, B.T.; Ghosh, T.; Sutton, P.C.
Title Overview of DMSP nightime lights and future possibilities Type Conference Article
Year 2009 Publication Joint Urban Remote Sensing Event Abbreviated Journal
Volume Issue Pages
Keywords Remote Sensing; DMSP; DMSP-OLS; Night lights
Abstract The Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has a unique capability to collect low-light imaging data of the earth at night. The OLS and its predecessors have collected this style of data on a nightly global basis since 1972. The digital archive of OLS data extends back to 1992. Over the years several global nighttime lights products have been generated. NGDC has now produced a set of global cloud-free nighttime lights products, specifically processed for the detection of changes in lighting emitted by human settlements, spanning 1992-93 to 2008. While the OLS is far from ideal for observing nighttime lights, the DMSP nighttime lights products have been successfully used in modeling the spatial distribution of population density, carbon emissions, and economic activity.
Address Earth Observation Group NOAA National Geophysical Data Center Boulder, Colorado 80305 USA; chris.elvidge(at)noaa.gov
Corporate Author Thesis
Publisher IEEE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2334-0932 ISBN 978-1-4244-3461-9 Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2668
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M.
Title A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data Type Journal Article
Year 2009 Publication Energies Abbreviated Journal Energies
Volume 2 Issue 3 Pages 595-622
Keywords
Abstract We have produced annual estimates of national and global gas flaring and gas flaring efficiency from 1994 through 2008 using low light imaging data acquired by the Defense Meteorological Satellite Program (DMSP). Gas flaring is a widely used practice for the disposal of associated gas in oil production and processing facilities where there is insufficient infrastructure for utilization of the gas (primarily methane). Improved utilization of the gas is key to reducing global carbon emissions to the atmosphere. The DMSP estimates of flared gas volume are based on a calibration developed with a pooled set of reported national gas flaring volumes and data from individual flares. Flaring efficiency was calculated as the volume of flared gas per barrel of crude oil produced. Global gas flaring has remained largely stable over the past fifteen years, in the range of 140 to 170 billion cubic meters (BCM). Global flaring efficiency was in the seven to eight cubic meters per barrel from 1994 to 2005 and declined to 5.6 m3 per barrel by 2008. The 2008 gas flaring estimate of 139 BCM represents 21% of the natural gas consumption of the USA with a potential retail market value of $68 billion. The 2008 flaring added more than 278 million metric tons of carbon dioxide equivalent (CO2e) into the atmosphere. The DMSP estimated gas flaring volumes indicate that global gas flaring has declined by 19% since 2005, led by gas flaring reductions in Russia and Nigeria, the two countries with the highest gas flaring levels. The flaring efficiency of both Russia and Nigeria improved from 2005 to 2008, suggesting that the reductions in gas flaring are likely the result of either improved utilization of the gas, reinjection, or direct venting of gas into the atmosphere, although the effect of uncertainties in the satellite data cannot be ruled out. It is anticipated that the capability to estimate gas flaring volumes based on satell
Address gas flaring; carbon emissions; nighttime lights; DMSP-OLS; remote sensing; light at night; satellite
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1996-1073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 231
Permanent link to this record