|   | 
Details
   web
Records
Author (up) Fobert, E.K.; Burke da Silva, K.; Swearer, S.E.
Title Artificial light at night causes reproductive failure in clownfish Type Journal Article
Year 2019 Publication Biology Letters Abbreviated Journal Biol. Lett.
Volume 15 Issue 7 Pages 20190272
Keywords Animals
Abstract The Earth is getting brighter at night, as artificial light at night (ALAN) continues to increase and extend its reach. Despite recent recognition of the damaging impacts of ALAN on terrestrial ecosystems, research on ALAN in marine systems is comparatively lacking. To further our understanding of the impacts of ALAN on marine organisms, this study examines how the reproductive fitness of the common clownfish Amphiprion ocellaris is influenced by the presence of ALAN. We assessed how exposure to low levels of ALAN affects (i) frequency of spawning, (ii) egg fertilization success, and (iii) hatching success of A. ocellaris under control (12 : 12 day–night) and treatment (12 : 12 day–ALAN) light regimes. While we found exposure to ALAN had no impact on the frequency of spawning or fertilization success, ALAN had dramatic effects on hatching. Amphiprion ocellaris eggs incubated in the presence of ALAN simply did not hatch, resulting in zero survivorship of offspring. These findings suggest ALAN can significantly reduce reproductive fitness in a benthic-spawning reef fish. Further research in this field is necessary to fully understand the extent of this impact on population and community dynamics in the wild.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1744-9561 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2562
Permanent link to this record
 

 
Author (up) O'Connor, J.J.; Fobert, E.K.; Besson, M.; Jacob, H.; Lecchini, D.
Title Live fast, die young: Behavioural and physiological impacts of light pollution on a marine fish during larval recruitment Type Journal Article
Year 2019 Publication Marine Pollution Bulletin Abbreviated Journal Mar Pollut Bull
Volume 146 Issue Pages 908-914
Keywords Animals; Ecosystem; Environmental Pollution/adverse effects; Fishes/growth & development/*physiology; Larva/growth & development/physiology/*radiation effects; Light/*adverse effects; Metamorphosis, Biological/radiation effects; Predatory Behavior/radiation effects; Coral reefs; Fish larvae; Light pollution; Metamorphosis; Recruitment
Abstract Artificial light at night (ALAN) is a recently acknowledged form of anthropogenic pollution of growing concern to the biology and ecology of exposed organisms. Though ALAN can have detrimental effects on physiology and behaviour, we have little understanding of how marine organisms in coastal areas may be impacted. Here, we investigated the effects of ALAN exposure on coral reef fish larvae during the critical recruitment stage, encompassing settlement, metamorphosis, and post-settlement survival. We found that larvae avoided illuminated settlement habitats, however those living under ALAN conditions for 10days post-settlement experienced changes in swimming behaviour and higher susceptibility to nocturnal predation. Although ALAN-exposed fish grew faster and heavier than control fish, they also experienced significantly higher mortality rates by the end of the experimental period. This is the first study on the ecological impacts of ALAN during the early life history of marine fish.
Address Institute for Pacific Coral Reefs, IRCP, 98729, Moorea, French Polynesia; PSL Research University: EPHE-UPVD-CNRS, USR3278 CRIOBE, BP 1013, 98729 Papetoai, Moorea, French Polynesia; Laboratoire d'Excellence “CORAIL”, Moorea, French Polynesia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0025-326X ISBN Medium
Area Expedition Conference
Notes PMID:31426235 Approved no
Call Number GFZ @ kyba @ Serial 2812
Permanent link to this record