|   | 
Details
   web
Record
Author (up) Dauchy, R T; Wren, M A; Dauchy, E M; Hoffman, A E; Hanifin, J P; Warfield, B; Jablonski, M R; Brainard, G C; Hill, S M; Mao, L; Dobek, G L; Dupepe, L M; Blask, D E
Title The influence of red light exposure at night on circadian metabolism and physiology in Sprague-Dawley rats Type Journal Article
Year 2015 Publication Journal of the American Association for Laboratory Animal Science Abbreviated Journal JAALAS
Volume 54 Issue 1 Pages 40-50
Keywords animals; rodents; Circadian Rhythm; Light wavelength
Abstract Early studies on rodents showed that short-term exposure to high-intensity light (> 70 lx) above 600 nm (red-appearing) influences circadian neuroendocrine and metabolic physiology. Here we addressed the hypothesis that long-term, low-intensity red light exposure at night (rLEN) from a 'safelight' emitting no light below approximately 620 nm disrupts the nocturnal circadian melatonin signal as well as circadian rhythms in circulating metabolites, related regulatory hormones, and physi- ologic parameters. Male Sprague-Dawley rats (n = 12 per group) were maintained on control 12:12-h light:dark (300 lx; lights on, 0600) or experimental 12:12 rLEN (8.1 lx) lighting regimens. After 1 wk, rats underwent 6 low-volume blood draws via cardiocentesis (0400, 0800, 1200, 1600, 2000, and 2400) over a 4-wk period to assess arterial plasma melatonin, total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin and corticosterone concentrations. Results revealed plasma melatonin levels (mean +/- 1 SD) were high in the dark phase (197.5 +/- 4.6 pg/mL) and low in the light phase (2.6 +/- 1.2 pg/mL) of control condi- tions and significantly lower than controls under experimental conditions throughout the 24-h period (P < 0.001). Prominent circadian rhythms of plasma levels of total fatty acid, glucose, lactic acid, pO2, pCO2, insulin, leptin, and corticosterone were significantly (P < 0.05) disrupted under experimental conditions as compared with the corresponding entrained rhythms under control conditions. Therefore, chronic use of low-intensity rLEN from a common safelight disrupts the circadian organization of neuroendocrine, metabolic, and physiologic parameters indicative of animal health and wellbeing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ schroer @ Serial 1583
Permanent link to this record