|   | 
Author (up) Anbalagan, M.; Dauchy, R.; Xiang, S.; Robling, A.; Blask, D.; Rowan, B.; Hill, S.
Title SAT-337 Disruption Of The Circadian Melatonin Signal By Dim Light At Night Promotes Bone-lytic Breast Cancer Metastases Type Journal Article
Year 2019 Publication Journal of the Endocrine Society Abbreviated Journal
Volume 3 Issue Supplement_1 Pages
Keywords Human Health; Cancer; Breast cancer; melatonin; shift work; mouse models
Abstract Breast cancer metastasis to bone is a major source of morbidity and mortality in women with advanced metastatic breast cancer. Morbidity from metastasis to bone is compounded by the fact that they cannot be surgically removed and can only be treated with chemotherapy and/or radiation therapy. Thus, there is critical need to develop new treatment strategies that kill bone metastatic tumors and reduce osteolytic lesions to improve patient quality of life and extend patient survival. Circadian rhythms are daily cycles of ~24 h that control many if not most physiologic processes and their disruption by exposure to light at night (LAN) or jet lag has been shown to be strongly associated with the development of cancer, particularly breast cancer. We have found that disruption of the anti-cancer circadian hormone melatonin (MLT) by light at night can significantly enhance the metastatic potential in breast cancer cells. Our work supports the report of the International Agency for Research on Cancer that shift work is a “probable human carcinogen” and highlights the association between exposure to light at night and invasive breast cancer. We recently reported that human breast tumor xenografts grown in athymic nude female rats housed in a photoperiod of 12h light at day: 12h dim light at night (dLAN, 0.2 lux – blocks the nighttime circadian MLT signal), display resistance to doxorubicin (Dox). More importantly, tumor growth and drug resistance could be blocked by the administration of Dox in circadian alignment with nocturnal MLT during dLAN. Our recent preliminary studies show that poorly invasive ERα positive MCF-7 breast cancer cells, when injected into the tibia (to mimic bone metastatic disease) of Foxn1nu athymic nude mice (which produce a strong circadian nighttime melatonin signal) housed in a dLAN photoperiod (suppressed nocturnal MLT production) developed full blown breast cancer tumors in bone (P<0.05) that are highly osteolytic (P<0.05). Moreover, patients with metastatic breast cancer are routinely treated with doxorubicin, which itself can promote bone damage. Our studies demonstrate that MLT slows the growth of metastatic breast cancer in bone but that the chrono-therapeutic use of doxorubicin in circadian alignment with melatonin in Foxn1nu mice with tibial breast tumors, reduced tumor growth in bone, reduced bone erosion, and promoted the formation of new bone. Successful use of this chronotherapeutic use of Dox and MLT in clinical trials increasing efficacy in preventing or suppressing breast cancer metastasis to bone while decreasing toxic side effects of doxorubicin would provide a revolutionary advancement in the treatment of bone metastatic breast cancer and decrease the morbidity and mortality associated with breast cancer metastasis to bone.
Address Tulane University School of Medicine, New Orleans, LA, United States
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2472-1972 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2433
Permanent link to this record

Author (up) Dauchy, R.T.; Xiang, S.; Mao, L.; Brimer, S.; Wren, M.A.; Yuan, L.; Anbalagan, M.; Hauch, A.; Frasch, T.; Rowan, B.G.; Blask, D.E.; Hill, S.M.
Title Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer Type Journal Article
Year 2014 Publication Cancer Research Abbreviated Journal Cancer Res
Volume 74 Issue 15 Pages 4099-4110
Keywords *Cancer; breast cancer; melatonin; endocrinology; tamoxifen; *Circadian Rhythm; circadian disruption; human health; epidemiology
Abstract Resistance to endocrine therapy is a major impediment to successful treatment of breast cancer. Preclinical and clinical evidence links resistance to antiestrogen drugs in breast cancer cells with the overexpression and/or activation of various pro-oncogenic tyrosine kinases. Disruption of circadian rhythms by night shift work or disturbed sleep-wake cycles may lead to an increased risk of breast cancer and other diseases. Moreover, light exposure at night (LEN) suppresses the nocturnal production of melatonin that inhibits breast cancer growth. In this study, we used a rat model of estrogen receptor (ERalpha(+)) MCF-7 tumor xenografts to demonstrate how altering light/dark cycles with dim LEN (dLEN) speed the development of breast tumors, increasing their metabolism and growth and conferring an intrinsic resistance to tamoxifen therapy. These characteristics were not observed in animals in which the circadian melatonin rhythm was not disrupted, or in animals subjected to dLEN if they received nocturnal melatonin replacement. Strikingly, our results also showed that melatonin acted both as a tumor metabolic inhibitor and a circadian-regulated kinase inhibitor to reestablish the sensitivity of breast tumors to tamoxifen and tumor regression. Together, our findings show how dLEN-mediated disturbances in nocturnal melatonin production can render tumors insensitive to tamoxifen. Cancer Res; 74(15); 4099-110. (c)2014 AACR.
Address Departments of Structural and Cellular Biology and Tulane Cancer Center and Louisiana Cancer Research Consortium; Tulane Circadian Cancer Biology Group; and
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-5472 ISBN Medium
Area Expedition Conference
Notes PMID:25062775; PMCID:PMC4119539 Approved no
Call Number IDA @ john @ Serial 355
Permanent link to this record