toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Lewanzik, D.; Voigt, C.C. url  openurl
  Title Lichtverschmutzung und die Folgen für Fledermäuse Type Journal Article
  Year 2013 Publication In: Held, M., Hölker, F. & Jessel, B. (2013) Schutz der Nacht – Lichtverschmutzung, Biodiversität und Nachtlandschaft. – BfN-Skripten Abbreviated Journal  
  Volume 336 Issue Pages 65-68  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language German Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kagoburian @ Serial 685  
Permanent link to this record
 

 
Author (up) Lewanzik, D.; Voigt, C.C.; Minderman, J. url  doi
openurl 
  Title Transition from conventional to light-emitting diode street lighting changes activity of urban bats Type Journal Article
  Year 2016 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol  
  Volume 54 Issue 1 Pages 264-271  
  Keywords Animals; Bats  
  Abstract Light pollution is rapidly increasing and can have deleterious effects on biodiversity, yet light types differ in their effect on wildlife. Among the light types used for street lamps, light-emitting diodes (LEDs) are expected to become globally predominant within the next few years.

In a large-scale field experiment, we recorded bat activity at 46 street lights for 12 nights each and investigated how the widespread replacement of conventional illuminants by LEDs affects urban bats: we compared bat activity at municipal mercury vapour (MV) street lamps that were replaced by LEDs with control sites that were not changed.

Pipistrellus pipistrellus was the most frequently recorded species; it was 45% less active at LEDs than at MV street lamps, but the activity did not depend on illuminance level. Light type did not affect the activity of Pipistrellus nathusii, Pipistrellus pygmaeus or bats in the Nyctalus/Eptesicus/Vespertilio (NEV) group, yet the activity of P. nathusii increased with illuminance level. Bats of the genus Myotis increased activity 4·5-fold at LEDs compared with MV lights, but illuminance level had no effect.

Decreased activity of P. pipistrellus, which are considered light tolerant, probably paralleled insect densities around lights. Further, our results suggest that LEDs may be less repelling for light-averse Myotis spp. than MV lights. Accordingly, the transition from conventional lighting techniques to LEDs may greatly alter the anthropogenic impact of artificial light on urban bats and might eventually affect the resilience of urban bat populations.

Synthesis and applications. At light-emitting diodes (LEDs), the competitive advantage – the exclusive ability to forage on insect aggregations at lights – is reduced for light-tolerant bats. Thus, the global spread of LED street lamps might lead to a more natural level of competition between light-tolerant and light-averse bats. This effect could be reinforced if the potential advantages of LEDs over conventional illuminants are applied in practice: choice of spectra with relatively little energy in the short wavelength range; reduced spillover by precisely directing light; dimming during low human activity times; and control by motion sensors. Yet, the potential benefits of LEDs could be negated if low costs foster an overall increase in artificial lighting.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8901 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1518  
Permanent link to this record
 

 
Author (up) Lewanzik, D.; Voigt, C.C.; Pocock, M. url  doi
openurl 
  Title Artificial light puts ecosystem services of frugivorous bats at risk Type Journal Article
  Year 2014 Publication Journal of Applied Ecology Abbreviated Journal J Appl Ecol  
  Volume 51 Issue 2 Pages 388-394  
  Keywords bats; mammals; animals; bat-facilitated succession; Carollia sowelli; fragmentation; frugivory; habitat connectivity; light pollution; Phyllostomidae; reforestation; seed dispersal  
  Abstract Natural succession of deforested areas and connectivity of remaining forest patches may suffer due to artificial light at night through a reduction in nocturnal seed disperser activity in lit areas. This could have negative impacts on biodiversity and consequent effects on land erosion, particularly in developing countries of the tropics where light pollution increases rapidly with growing economies and human populations. Mitigation requires that the use of artificial light should be limited in space, time and intensity to the minimum necessary. The effectiveness of ‘darkness corridors’ to enhance fragment connectivity and to reduce species loss should be evaluated. Policy-makers of tropical countries should become aware of the potential detrimental effects of artificial lighting on wildlife and ecosystem functioning.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8901 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 98  
Permanent link to this record
 

 
Author (up) Manfrin, A.; Lehmann, D.; van Grunsven, R.H.A.; Larsen, S.; Syväranta, J.; Wharton, G.; Voigt, C.C.; Monaghan, M.T.; Hölker, F. url  doi
openurl 
  Title Dietary changes in predators and scavengers in a nocturnally illuminated riparian ecosystem Type Journal Article
  Year 2018 Publication Oikos Abbreviated Journal Oikos  
  Volume 127 Issue 7 Pages 960-969  
  Keywords Ecology; Animals  
  Abstract Aquatic and terrestrial ecosystems are linked by fluxes of carbon and nutrients in riparian areas. Processes that alter these fluxes may therefore change the diet and composition of consumer communities. We used stable carbon isotope (δ13C) analyses to test whether the increased abundance of aquatic prey observed in a previous study led to a dietary shift in riparian consumers in areas illuminated by artificial light at night (ALAN). We measured the contribution of aquatic-derived carbon to diets in riparian arthropods in experimentally lit and unlit sites along an agricultural drainage ditch in northern Germany. The δ13C signature of the spider Pachygnatha clercki (Tetragnathidae) was 0.7‰ lower in the ALAN-illuminated site in summer, indicating a greater assimilation of aquatic prey. Bayesian mixing models also supported higher intake of aquatic prey under ALAN in summer (34% versus 21%). In contrast, isotopic signatures for P. clercki (0.3‰) and Pardosa prativaga (0.7‰) indicated a preference for terrestrial prey in the illuminated site in summer. Terrestrial prey intake increased in spring for P. clercki under ALAN (from 70% to 74%) and in spring and autumn for P. prativaga (from 68% to 77% and from 67% to 72%) and Opiliones (from 68% to 72%; 68% to 75%). This was despite most of the available prey (up to 80%) being aquatic in origin. We conclude that ALAN changed the diet of riparian secondary consumers by increasing the density of both aquatic and terrestrial prey. Dietary changes were species- and season-specific, indicating that the effects of ALAN may interact with phenology and feeding strategy. Because streetlights can occur in high density near freshwaters, ALAN may have widespread effects on aquatic-terrestrial ecosystem linkages.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-1299 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ kyba @ Serial 1811  
Permanent link to this record
 

 
Author (up) Straka, T.M.; Greif, S.; Schultz, S.; Goerlitz, H.R.; Voigt, C.C. url  doi
openurl 
  Title The effect of cave illumination on bats Type Journal Article
  Year 2019 Publication Global Ecology and Conservation Abbreviated Journal Global Ecology and Conservation  
  Volume 21 Issue Pages e00808  
  Keywords Animals; Lighting  
  Abstract Artificial light at night has large impacts on nocturnal wildlife such as bats, yet its effect varies with wavelength of light, context, and across species involved. Here, we studied in two experiments how wild bats of cave-roosting species (Rhinolophus mehelyi, R. euryale, Myotis capaccinii and Miniopterus schreibersii) respond to LED lights of different colours. In dual choice experiments, we measured the acoustic activity of bats in response to neutral-white, red or amber LED at a cave entrance and in a flight room – mimicking a cave interior. In the flight room, M. capaccinii and M. schreibersii preferred red to white light, but showed no preference for red over amber, or amber over white light. In the cave entrance experiment, all light colours reduced the activity of all emerging species, yet red LED had the least negative effect. Rhinolophus species reacted most strongly, matching their refusal to fly at all under any light treatment in the flight room. We conclude that the placement and light colour of LED light should be considered carefully in lighting concepts for caves both in the interior and at the entrance. In a cave interior, red LED light could be chosen – if needed at all – for careful temporary illumination of areas, yet areas important for bats should be avoided based on the precautionary principle. At cave entrances, the high sensitivity of most bat species, particularly of Rhinolophus spp., towards light sources almost irrespective of colour, calls for utmost caution when illuminating cave entrances.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2351-9894 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2700  
Permanent link to this record
 

 
Author (up) Voigt, C.C., Scholl, J.M., Bauer, J. et al. url  doi
openurl 
  Title Movement responses of common noctule bats to the illuminated urban landscape Type Journal Article
  Year 2020 Publication Landscape Ecology Abbreviated Journal  
  Volume 35 Issue Pages 189-201  
  Keywords Animals  
  Abstract Context

Cities are a challenging habitat for obligate nocturnal mammals because of the ubiquitous use of artificial light at night (ALAN). How nocturnal animals move in an urban landscape, particularly in response to ALAN is largely unknown.

Objectives

We studied the movement responses, foraging and commuting, of common noctules (Nyctalus noctula) to urban landscape features in general and ALAN in particular.

Methods

We equipped 20 bats with miniaturized GPS loggers in the Berlin metropolitan area and related spatial positions of bats to anthropogenic and natural landscape features and levels of ALAN.

Results

Common noctules foraged close to ALAN only next to bodies of water or well vegetated areas, probably to exploit swarms of insects lured by street lights. In contrast, they avoided illuminated roads, irrespective of vegetation cover nearby. Predictive maps identified most of the metropolitan area as non-favoured by this species because of high levels of impervious surfaces and ALAN. Dark corridors were used by common noctules for commuting and thus likely improved the permeability of the city landscape.

Conclusions

We conclude that the spatial use of common noctules, previously considered to be more tolerant to light than other bats, is largely constrained by ALAN. Our study is the first individual-based GPS tracking study to show sensitive responses of nocturnal wildlife to light pollution. Approaches to protect urban biodiversity need to include ALAN to safeguard the larger network of dark habitats for bats and other nocturnal species in cities.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2961  
Permanent link to this record
 

 
Author (up) Voigt, C.C.; Rehnig, K.; Lindecke, O.; Petersons, G. url  doi
openurl 
  Title Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants Type Journal Article
  Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol  
  Volume 8 Issue 18 Pages 9353-9361  
  Keywords Animals  
  Abstract The replacement of conventional lighting with energy-saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10-min light-on/light-off intervals to red or warm-white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm-white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm-white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines.  
  Address Faculty of Veterinary Medicine Latvia University of Life Sciences and Technologies Jelgava Latvia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-7758 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30377506; PMCID:PMC6194273 Approved no  
  Call Number NC @ ehyde3 @ Serial 2074  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: