|   | 
Details
   web
Records
Author (up) Baugh, K.; Hsu, F.-C.; Elvidge, C.D.; Zhizhin, M.
Title Nighttime Lights Compositing Using the VIIRS Day-Night Band: Preliminary Results Type Journal Article
Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings
Volume 35 Issue Pages 70
Keywords remote sensing; light pollution; VIIRS; satellite; radiometry
Abstract Dramatically improved nighttime lights capabilities are presented by the launch of the National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day Night Band (DNB) sensor. Building on 18 years of experience compositing nighttime data from the Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), NOAA’s NGDC Earth Observation Group has started adapting their algorithms to process these new data. The concept of compositing nighttime data comprises combining only high quality data components over a period of time to improve sensitivity and coverage. For this work, flag image are compiled to describe image quality. The flag categories include: daytime, twilight, stray light, lunar illuminance, noisy edge of scan data, clouds, and no data. High quality data is defined as not having any of these attributes present. Two methods of reprojection are necessary due to data collection characteristics. Custom algorithms have been created to terrain-correct and reproject all data to a common 15 arc second grid. Results of compositing over two time periods in 2012 are presented to demonstrate data quality and initial capabilities. These data can be downloaded at http://www.ngdc.noaa.gov/eog/viirs/downloadviirsntl.html.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-3026 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 197
Permanent link to this record
 

 
Author (up) Do, Q.-T.; Shapiro, J.N.; Elvidge, C.D.; Abdel-Jelil, M.; Ahn, D.P.; Baugh, K.; Hansen-Lewis, J.; Zhizhin, M.; Bazilian, M.D.
Title Terrorism, geopolitics, and oil security: Using remote sensing to estimate oil production of the Islamic State Type Journal Article
Year 2018 Publication Energy Research & Social Science Abbreviated Journal Energy Research & Social Science
Volume 44 Issue Pages 411-418
Keywords Remote Sensing; Economics
Abstract As the world’s most traded commodity, oil production is typically well monitored and analyzed. It also has established links to geopolitics, international relations, and security. Despite this attention, the illicit production, refining, and trade of oil and derivative products occur all over the world and provide significant revenues outside of the oversight and regulation of governments. A prominent manifestation of this phenomenon is how terrorist and insurgent organizations—including the Islamic State group, also known as ISIL/ISIS or Daesh—use oil as a revenue source. Understanding the spatial and temporal variation in production can help determine the scale of operations, technical capacity, and revenue streams. This information, in turn, can inform both security and reconstruction strategies. To this end, we use satellite multi-spectral imaging and ground-truth pre-war output data to effectively construct a real-time census of oil production in areas controlled by the ISIL terrorist group. More broadly, remotely measuring the activity of extractive industries in conflict-affected areas without reliable administrative data can support a broad range of public policy and decisions and military operations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-6296 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1864
Permanent link to this record
 

 
Author (up) Elvidge, C.; Zhizhin, M.; Baugh, K.; Hsu, F.-C.
Title Automatic Boat Identification System for VIIRS Low Light Imaging Data Type Journal Article
Year 2015 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 7 Issue 3 Pages 3020-3036
Keywords Remote Sensing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ christopher.kyba @ Serial 1136
Permanent link to this record
 

 
Author (up) Elvidge, C.; Zhizhin, M.; Baugh, K.; Hsu, F.; Ghosh, T.
Title Extending Nighttime Combustion Source Detection Limits with Short Wavelength VIIRS Data Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 4 Pages 395
Keywords Remote Sensing
Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) collects low light imaging data at night in five spectral bands. The best known of these is the day/night band (DNB) which uses light intensification for imaging of moonlit clouds in the visible and near-infrared (VNIR). The other four low light imaging bands are in the NIR and short-wave infrared (SWIR), designed for daytime imaging, which continue to collect data at night. VIIRS nightfire (VNF) tests each nighttime pixel for the presence of sub-pixel IR emitters across six spectral bands with two bands each in three spectral ranges: NIR, SWIR, and MWIR. In pixels with detection in two or more bands, Planck curve fitting leads to the calculation of temperature, source area, and radiant heat using physical laws. An analysis of January 2018 global VNF found that inclusion of the NIR and SWIR channels results in a doubling of the VNF pixels with temperature fits over the detection numbers involving the MWIR. The addition of the short wavelength channels extends detection limits to smaller source areas across a broad range of temperatures. The VIIRS DNB has even lower detection limits for combustion sources, reaching 0.001 m2 at 1800 K, a typical temperature for a natural gas flare. Comparison of VNF tallies and DNB fire detections in a 2015 study area in India found the DNB had 15 times more detections than VNF. The primary VNF error sources are false detections from high energy particle detections (HEPD) in space and radiance saturation on some of the most intense events. The HEPD false detections are largely eliminated in the VNF output by requiring multiband detections for the calculation of temperature and source size. Radiance saturation occurs in about 1% of the VNF detections and occurs primarily in the M12 spectral band. Inclusion of the radiances affected by saturation results in temperature and source area calculation errors. Saturation is addressed by identifying the presence of saturation and excluding those radiances from the Planck curve fitting. The extremely low detection limits for the DNB indicates that a DNB fire detection algorithm could reveal vast numbers of combustion sources that are undetectable in longer wavelength VIIRS data. The caveats with the DNB combustion source detection capability is that it should be restricted to pixels that are outside the zone of known VIIRS detected electric lighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2218
Permanent link to this record
 

 
Author (up) Elvidge, C.; Zhizhin, M.; Hsu, F.-C.; Baugh, K.
Title VIIRS Nightfire: Satellite Pyrometry at Night Type Journal Article
Year 2013 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 5 Issue 9 Pages 4423-4449
Keywords SNPP; VIIRS; fire detection; gas flaring; biomass burning; fossil fuel carbon emissions
Abstract The Nightfire algorithm detects and characterizes sub-pixel hot sources using multispectral data collected globally, each night, by the Suomi National Polar Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS). The spectral bands utilized span visible, near-infrared (NIR), short-wave infrared (SWIR), and mid-wave infrared (MWIR). The primary detection band is in the SWIR, centered at 1.6 μm. Without solar input, the SWIR spectral band records sensor noise, punctuated by high radiant emissions associated with gas flares, biomass burning, volcanoes, and industrial sites such as steel mills. Planck curve fitting of the hot source radiances yields temperature (K) and emission scaling factor (ESF). Additional calculations are done to estimate source size (m2), radiant heat intensity (W/m2), and radiant heat (MW). Use of the sensor noise limited M7, M8, and M10 spectral bands at night reduce scene background effects, which are widely reported for fire algorithms based on MWIR and long-wave infrared. High atmospheric transmissivity in the M10 spectral band reduces atmospheric effects on temperature and radiant heat retrievals. Nightfire retrieved temperature estimates for sub-pixel hot sources ranging from 600 to 6,000 K. An intercomparison study of biomass burning in Sumatra from June 2013 found Nightfire radiant heat (MW) to be highly correlated to Moderate Resolution Imaging Spectrometer (MODIS) Fire Radiative Power (MW).
Address Earth Observation Group, NOAA National Geophysical Data Center, Boulder, CO 80305, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 199
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Baugh, K.; Zhizhin, M.; Hsu, F.C.; Ghosh, T.
Title VIIRS night-time lights Type Journal Article
Year 2017 Publication International Journal of Remote Sensing Abbreviated Journal International Journal of Remote Sensing
Volume 38 Issue 21 Pages 5860-5879
Keywords Remote Sensing
Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB) collects global low-light imaging data that have significant improvements over comparable data collected for 40 years by the DMSP Operational Linescan System. One of the prominent features of DNB data is the detection of electric lighting present on the Earth’s surface. Most of these lights are from human settlements. VIIRS collects source data that could be used to generate monthly and annual science grade global radiance maps of human settlements with electric lighting. There are a substantial number of steps involved in producing a product that has been cleaned to exclude background noise, solar and lunar contamination, data degraded by cloud cover, and features unrelated to electric lighting (e.g. fires, flares, volcanoes). This article describes the algorithms developed for the production of high-quality global VIIRS night-time lights. There is a broad base of science users for VIIRS night-time lights products, ranging from land-use scientists, urban geographers, ecologists, carbon modellers, astronomers, demographers, economists, and social scientists.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-1161 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number LoNNe @ kyba @ Serial 1750
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Baugh, K.E.; Zhizhin, M.; Hsu, F.-C.
Title Why VIIRS data are superior to DMSP for mapping nighttime lights Type Journal Article
Year 2013 Publication Proceedings of the Asia-Pacific Advanced Network Abbreviated Journal APAN Proceedings
Volume 35 Issue Pages 62
Keywords
Abstract For more than forty years the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) has been the only satellite system collecting global low-light imaging data. A series of twenty-four DMSP satellites have collected low-light imaging data. The design of the OLS has not changed significantly since satellite F-4 flew in the late 1970’s and OLS data have relatively coarse spatial resolution, limited dynamic range, and lack in-flight calibration. In 2011 NASA and NOAA launched the Suomi National Polar Partnership (SNPP) satellite carrying the first Visible Infrared Imaging Radiometer Suite (VIIRS) instrument. The VIIRS collects low light imaging data and has several improvements over the OLS’ capabilities. In this paper we contrast the nighttime low light imaging collection capabilities of these two systems and compare their data products.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2227-3026 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 198
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Bazilian, M.D.; Zhizhin, M.; Ghosh, T.; Baugh, K.; Hsu, F.-C.
Title The potential role of natural gas flaring in meeting greenhouse gas mitigation targets Type Journal Article
Year 2018 Publication Energy Strategy Reviews Abbreviated Journal Energy Strategy Reviews
Volume 20 Issue Pages 156-162
Keywords Remote Sensing
Abstract In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2211467X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2055
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Ghosh, T.; Baugh, K.; Zhizhin, M.; Hsu, F.-C.; Katada, N.S.; Penalosa, W.; Hung, B.Q.
Title Rating the Effectiveness of Fishery Closures With Visible Infrared Imaging Radiometer Suite Boat Detection Data Type Journal Article
Year 2018 Publication Frontiers in Marine Science Abbreviated Journal Front. Mar. Sci.
Volume 5 Issue Pages
Keywords Remote Sensing
Abstract Fishery closures are widely used to promote the sustainability of fish stocks. Fishery agencies typically have very little data relevant to planning closure enforcement actions and evaluating the effectiveness of closures, due in part to the vast expanse and remote nature of many closures. In some cases the effectiveness of closures can be evaluated using data from GPS based beacons, such as Automatic Identification System (AIS) or Vessel Monitoring Systems (VMS) installed on fishing boats. In fisheries where few boats are equipped with AIS or VMS, the rating of closures relies on other data sources capable of detecting or inferring fishing activity. One such source comes from low light imaging data collected by the NASA/NOAA Visible Infrared Imaging Radiometer Suite (VIIRS), which can detect fishing boats using lights to attract catch. This is a widely used practice in Asia and several other regions. NOAA has developed an automatic system for reporting the locations of VIIRS boat detections with a nominal 4 h temporal latency. VIIRS boat detection alerts are running for more than 900 fishery closures in the Philippines, with email and SMS transmission modes. These alerts are being actively used in the Philippines to plan enforcement actions and there is a growing list of apprehensions that occurred based on tip-offs from VIIRS. The VIIRS boat detection archive extends back to April 2012. A VIIRS closure index (VCI) has been developed to rate the effectiveness of closures on monthly increments in terms of a percentage. The VCI analysis was performed on three types of closures: an ad hoc fishery closure associated with a toxic industrial discharge, a seasonal fishery closure and a permanent closure in restricted coastal waters. The VCI results indicate that it is possible to rank the effectiveness of different closure, year-to-year differences in compliance levels, and to identify closure encroachments which may warrant additional enforcement effort.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2296-7745 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2087
Permanent link to this record
 

 
Author (up) Elvidge, C.D.; Ghosh, T.; Hsu, F.-C.; Zhizhin, M.; Bazilian, M.
Title The Dimming of Lights in China during the COVID-19 Pandemic Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 17 Pages 2851
Keywords Remote Sensing; VIIRS; Day-night band (DNB); Nighttime lights; COVID-19; Pandemic; VIIRS-DNB
Abstract A satellite survey of the cumulative radiant emissions from electric lighting across China reveals a large radiance decline in lighting from December 2019 to February 2020—the peak of the lockdown established to suppress the spread of COVID-19 infections. To illustrate the changes, an analysis was also conducted on a reference set from a year prior to the pandemic. In the reference period, the majority (62%) of China’s population lived in administrative units that became brighter in March 2019 relative to December 2018. The situation reversed in February 2020, when 82% of the population lived in administrative units where lighting dimmed as a result of the pandemic. The dimming has also been demonstrated with difference images for the reference and pandemic image pairs, scattergrams, and a nightly temporal profile. The results indicate that it should be feasible to monitor declines and recovery in economic activity levels using nighttime lighting as a proxy.
Address Earth Observation Group, Payne Institute for Public Policy, Colorado School of Mines, Golden, CO 80401, USA; celvidge(at)mines.edu
Corporate Author Thesis
Publisher MDPI Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 3134
Permanent link to this record