|   | 
Details
   web
Records
Author Levin, N.; Kyba, C.C.M.; Zhang, Q.
Title Remote Sensing of Night Lights—Beyond DMSP Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 11 Issue 12 Pages 1472
Keywords Remote Sensing; Commentary
Abstract Remote sensing of night lights differs from other sources of remote sensing in its ability to directly observe human activity from space as well as in informing us on a new type of anthropogenic threat, that of light pollution. This special issue focuses on studies which used newer sensors than the Defense Meteorological Satellite Program – Operational Line-Scan System (DMSP/OLS). Most of the analyses focused on data from the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime sensor (also called the Day/Night Band, or VIIRS/DNB in short), for which the first instrument in the series was launched in 2011. In this editorial, we provide an overview of the 12 papers published in this special issue, and offer suggestions for future research directions in this field, both with respect to the remote sensing platforms and algorithms, and with respect to the development of new applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2575
Permanent link to this record
 

 
Author Wang, C.; Qin, H.; Zhao, K.; Dong, P.; Yang, X.; Zhou, G.; Xi, X.
Title Assessing the Impact of the Built-Up Environment on Nighttime Lights in China Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 11 Issue 14 Pages 1712
Keywords Remote Sensing
Abstract Figuring out the effect of the built-up environment on artificial light at night is essential for better understanding nighttime luminosity in both socioeconomic and ecological perspectives. However, there are few studies linking artificial surface properties to nighttime light (NTL). This study uses a statistical method to investigate effects of construction region environments on nighttime brightness and its variation with building height and regional economic development level. First, we extracted footprint-level target heights from Geoscience Laser Altimeter System (GLAS) waveform light detection and ranging (LiDAR) data. Then, we proposed a set of built-up environment properties, including building coverage, vegetation fraction, building height, and surface-area index, and then extracted these properties from GLAS-derived height, GlobeLand30 land-cover data, and DMSP/OLS radiance-calibrated NTL data. Next, the effects of non-building areas on NTL data were removed based on a supervised method. Finally, linear regression analyses were conducted to analyze the relationships between nighttime lights and built-up environment properties. Results showed that building coverage and vegetation fraction have weak correlations with nighttime lights (R2 < 0.2), building height has a moderate correlation with nighttime lights (R2 = 0.48), and surface-area index has a significant correlation with nighttime lights (R2 = 0.64). The results suggest that surface-area index is a more reasonable measure for estimating light number and intensity of NTL because it takes into account both building coverage and height, i.e., building surface area. Meanwhile, building height contributed to nighttime lights greater than building coverage. Further analysis showed the correlation between NTL and surface-area index becomes stronger with the increase of building height, while it is the weakest when the regional economic development level is the highest. In conclusion, these results can help us better understand the determinants of nighttime lights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2607
Permanent link to this record
 

 
Author Zhao,; Zhou,; Li,; Cao,; He,; Yu,; Li,; Elvidge,; Cheng,; Zhou,
Title Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 11 Issue 17 Pages 1971
Keywords Remote Sensing; Review
Abstract Nighttime light observations from remote sensing provide us with a timely and spatially explicit measure of human activities, and therefore enable a host of applications such as tracking urbanization and socioeconomic dynamics, evaluating armed conflicts and disasters, investigating fisheries, assessing greenhouse gas emissions and energy use, and analyzing light pollution and health effects. The new and improved sensors, algorithms, and products for nighttime lights, in association with other Earth observations and ancillary data (e.g., geo-located big data), together offer great potential for a deep understanding of human activities and related environmental consequences in a changing world. This paper reviews the advances of nighttime light sensors and products and examines the contributions of nighttime light remote sensing to perceiving the changing world from two aspects (i.e., human activities and environmental changes). Based on the historical review of the advances in nighttime light remote sensing, we summarize the challenges in current nighttime light remote sensing research and propose four strategic directions, including: Improving nighttime light data; developing a long time series of consistent nighttime light data; integrating nighttime light observations with other data and knowledge; and promoting multidisciplinary and interdisciplinary analyses of nighttime light observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2677
Permanent link to this record
 

 
Author Ma, X.; Li, C.; Tong, X.; Liu, S.
Title A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 11 Issue 21 Pages 2516
Keywords Remote Sensing
Abstract Recent advances in the fusion technology of remotely sensed data have led to an increased availability of extracted urban information from multiple spatial resolutions and multi-temporal acquisitions. Despite the existing extraction methods, there remains the challenging task of fully exploiting the characteristics of multisource remote sensing data, each of which has its own advantages. In this paper, a new fusion approach for accurately extracting urban built-up areas based on the use of multisource remotely sensed data, i.e., the DMSP-OLS nighttime light data, the MODIS land cover product (MCD12Q1) and Landsat 7 ETM+ images, was proposed. The proposed method mainly consists of two components: (1) the multi-level data fusion, including the initial sample selection, unified pixel resolution and feature weighted calculation at the feature level, as well as pixel attribution determination at decision level; and (2) the optimized sample selection with multi-factor constraints, which indicates that an iterative optimization with the normalized difference vegetation index (NDVI), the modified normalized difference water index (MNDWI), and the bare soil index (BSI), along with the sample training of the support vector machine (SVM) and the extraction of urban built-up areas, produces results with high credibility. Nine Chinese provincial capitals along the Silk Road Economic Belt, such as Chengdu, Chongqing, Kunming, Xining, and Nanning, were selected to test the proposed method with data from 2001 to 2010. Compared with the results obtained by the traditional threshold dichotomy and the improved neighborhood focal statistics (NFS) method, the following could be concluded. (1) The proposed approach achieved high accuracy and eliminated natural elements to a great extent while obtaining extraction results very consistent to those of the more precise improved NFS approach at a fine scale. The average overall accuracy (OA) and average Kappa values of the extracted urban built-up areas were 95% and 0.83, respectively. (2) The proposed method not only identified the characteristics of the urban built-up area from the nighttime light data and other daylight images at the feature level but also optimized the samples of the urban built-up area category at the decision level, making it possible to provide valuable information for urban planning, construction, and management with high accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2731
Permanent link to this record
 

 
Author Chen, X.
Title Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal (down) Remote Sensing
Volume 12 Issue 1 Pages 169
Keywords Remote Sensing
Abstract This study examines whether the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights can be used to predict population migration in small areas in European Union (EU) countries. The analysis uses the most current data measured at the smallest administrative unit in 18 EU countries provided by the European Commission. The ordinary least squares regression model shows that, compared to population size and gross domestic product (GDP), lights data are another useful predictor. The predicting power of lights is similar to population but it is much stronger than GDP per capita. For most countries, regression models with lights can explain 50–90% of variances in small area migrations. The results also show that the annual VIIRS lights (2015–2016) are slightly better predictors for migration population than averaged monthly VIIRS lights (2014–2017), and their differences are more pronounced in high latitude countries. Further, analysis of quadratic models, models with interaction effects and spatial lag, shows the significant effect of lights on migration in the European region. The study concludes that VIIRS nighttime lights hold great potential for studying human migration flow, and further open the door for more widespread application of remote sensing information in studying dynamic demographic processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2794
Permanent link to this record