|   | 
Details
   web
Records
Author Grubisic, M.; Haim, A.; Bhusal, P.; Dominoni, D.M.; Gabriel, K.M.A.; Jechow, A.; Kupprat, F.; Lerner, A.; Marchant, P.; Riley, W.; Stebelova, K.; van Grunsven, R.H.A.; Zeman, M.; Zubidat, A.E.; Hölker, F.
Title Light Pollution, Circadian Photoreception, and Melatonin in Vertebrates Type Journal Article
Year 2019 Publication Sustainability Abbreviated Journal (down) Sustainability
Volume 11 Issue 22 Pages 6400
Keywords Animals; Review
Abstract Artificial light at night (ALAN) is increasing exponentially worldwide, accelerated by the transition to new efficient lighting technologies. However, ALAN and resulting light pollution can cause unintended physiological consequences. In vertebrates, production of melatonin—the “hormone of darkness” and a key player in circadian regulation—can be suppressed by ALAN. In this paper, we provide an overview of research on melatonin and ALAN in vertebrates. We discuss how ALAN disrupts natural photic environments, its effect on melatonin and circadian rhythms, and different photoreceptor systems across vertebrate taxa. We then present the results of a systematic review in which we identified studies on melatonin under typical light-polluted conditions in fishes, amphibians, reptiles, birds, and mammals, including humans. Melatonin is suppressed by extremely low light intensities in many vertebrates, ranging from 0.01–0.03 lx for fishes and rodents to 6 lx for sensitive humans. Even lower, wavelength-dependent intensities are implied by some studies and require rigorous testing in ecological contexts. In many studies, melatonin suppression occurs at the minimum light levels tested, and, in better-studied groups, melatonin suppression is reported to occur at lower light levels. We identify major research gaps and conclude that, for most groups, crucial information is lacking. No studies were identified for amphibians and reptiles and long-term impacts of low-level ALAN exposure are unknown. Given the high sensitivity of vertebrate melatonin production to ALAN and the paucity of available information, it is crucial to research impacts of ALAN further in order to inform effective mitigation strategies for human health and the wellbeing and fitness of vertebrates in natural ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2733
Permanent link to this record
 

 
Author Sȩdziwy, A.; Basiura, A.; Wojnicki, I.
Title Roadway Lighting Retrofit: Environmental and Economic Impact of Greenhouse Gases Footprint Reduction Type Journal Article
Year 2018 Publication Sustainability Abbreviated Journal (down) Sustainability
Volume 10 Issue 11 Pages 3925
Keywords Economics; Lighting
Abstract Roadway lighting retrofit is a process continuously developed in urban environments due to both installation aging and technical upgrades. The spectacular example is replacing the high intensity discharge (HID) lamps, usually high pressure sodium (HPS) ones, with the sources based on light-emitting diodes (LED). The main focus in the related research was put on energy efficiency of installations and corresponding financial benefits. In this work, we extend those considerations analyzing how lighting optimization impacts greenhouse gas (GHG) emission reduction and what are the resultant financial benefits expressed in terms of emission allowances prices. Our goal is twofold: (i) obtaining a quantitative assessment of how a GHG footprint depends on a technological scope of modernization of a city HPS-based lighting system; and (ii) showing that the costs of such a modernization can be decreased by up to 10% thanks to a lowered CO 2 emission volume. Moreover, we identify retrofit patterns yielding the most substantial environmental impact.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2772
Permanent link to this record
 

 
Author Rabaza, O.; Molero-Mesa, E.; Aznar-Dols, F.; Gómez-Lorente, D.
Title Experimental Study of the Levels of Street Lighting Using Aerial Imagery and Energy Efficiency Calculation Type Journal Article
Year 2018 Publication Sustainability Abbreviated Journal (down) Sustainability
Volume 10 Issue 12 Pages 4365
Keywords Remote Sensing; Lighting
Abstract This article describes an innovative method for measuring lighting levels and other lighting parameters through the use of aerial imagery of towns and cities. Combined with electricity consumption data from smart electricity meters, it was possible to measure the energy efficiency of public lighting installations. The results of this study also confirmed that lighting measurements, installation material, luminaire position, and electricity consumption data can be easily integrated into geographic information systems (GIS). The main advantage of this new methodology is that it provides information about lighting installations in large areas in less time than more conventional procedures. It is thus a more effective way of obtaining the data required to calculate the energy efficiency of lighting levels and electricity consumption. There is even the possibility of generating street lighting maps that provide local administrations with up-to-date information regarding the status of public lighting installations in their city. In this way, modifications or improvements can be made to achieve greater energy savings and, if necessary, to correct the distribution or configuration of public lighting systems to make them more efficient and sustainable. This research studied levels of street lighting and calculated the energy efficiency in various streets of Deifontes (Granada), through the use of aerial imagery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2773
Permanent link to this record
 

 
Author Li, J.; Xu, Y.; Cui, W.; Ji, M.; Su, B.; Wu, Y.; Wang, J.
Title Investigation of Nighttime Light Pollution in Nanjing, China by Mapping Illuminance from Field Observations and Luojia 1-01 Imagery Type Journal Article
Year 2020 Publication Sustainability Abbreviated Journal (down) Sustainability
Volume 12 Issue 2 Pages 681
Keywords Remote Sensing
Abstract In recent years, the number of artificial light sources has tremendously increased with the development of lighting technology and the economy. Nighttime light pollution has been an increasing environmental problem, resulting in negative impacts on human health and the ecological environment. Detailed knowledge of light pollution is important for the planning and management of urban lighting. In this study, light pollution in Nanjing, China was monitored and analyzed using field observations and a 130-m resolution Luojia 1-01 nighttime light imagery. Combined with in situ observations and satellite imagery, a variety of empirical models were established for estimating ambient illuminance at night. Cross-validation was employed to assess the performance of these models, indicating that the third-degree polynomials model had the best performance (MAE = 5.06 lx, R2 = 0.81). The developed third-degree polynomial model was then applied to the Luojia 1-01 image to map the nighttime illuminance in Nanjing. The nighttime illuminance depicted the spatial pattern of the light environment over Nanjing and also indicated some heavily light-polluted areas. Some lit areas were residential areas, whose high brightness had negative effects on residents and need particular attention. This study provides a quantitative and objective reference for the light pollution management in Nanjing, and also a reference for light pollution survey in other regions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2823
Permanent link to this record
 

 
Author Schulte-Römer, N.; Meier, J.; Söding, M.; Dannemann, E.
Title The LED Paradox: How Light Pollution Challenges Experts to Reconsider Sustainable Lighting Type Journal Article
Year 2019 Publication Sustainability Abbreviated Journal (down) Sustainability
Volume 11 Issue 21 Pages 6160
Keywords Energy; Lighting; Society
Abstract In the 21st century, the notion of “sustainable lighting” is closely associated with LED technology. In the past ten years, municipalities and private light users worldwide have installed light-emitting diodes in urban spaces and public streets to save energy. Yet an increasing body of interdisciplinary research suggests that supposedly sustainable LED installations are in fact unsustainable, because they increase light pollution. Paradoxically, blue-rich cool-white LED lighting, which is the most energy-efficient, also appears to be the most ecologically unfriendly. Biologists, physicians and ecologists warn that blue-rich LED light disturbs the circadian day-and-night rhythm of living organisms, including humans, with potential negative health effects on individual species and whole ecosystems. Can the paradox be solved? This paper explores this question based on our transdisciplinary research project Light Pollution—A Global Discussion. It reveals how light pollution experts and lighting professionals see the challenges and potential of LED lighting from their different viewpoints. This expert feedback shows that “sustainable LED lighting” goes far beyond energy efficiency as it raises complex design issues that imply stakeholder negotiation. It also suggests that the LED paradox may be solved in context, but hardly in principle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2824
Permanent link to this record