Records |
Author |
Willmott, N. J., Henneken, J., Elgar, M. A., & Jones, T. M. |
Title |
Guiding lights: Foraging responses of juvenile nocturnal orb‐web spiders to the presence of artificial light at night |
Type |
Journal Article |
Year |
2019 |
Publication |
Ethology |
Abbreviated Journal  |
|
Volume |
125 |
Issue |
5 |
Pages |
289-287 |
Keywords |
Animals |
Abstract |
The reach of artificial light at night (ALAN) is growing rapidly around the globe, including the increasing use of energy‐efficient LED lights. Many studies document the physiological costs of light at night, but far fewer have focused on the potential benefits for nocturnal insectivores and the likely ecological consequences of shifts in predator–prey relationships. We investigated the effects of ALAN on the foraging behaviour and prey capture success in juvenile Australian garden orb‐web spiders (Eriophora biapicata). Laboratory experiments demonstrated that juvenile spiders were attracted to LED lights when choosing foraging sites, but prey availability was a stronger cue for remaining in a foraging site. Field experiments revealed a significant increase in prey capture rates for webs placed near LED lights. This suggests that any physiological costs of light at night may be offset by the foraging benefits, perhaps partially explaining recently observed increases in the size, fecundity and abundance of some orb‐web spider species in urban environments. Our results highlight the potential long‐term consequences of night lighting in urban ecosystems, through the impact of orb‐web spiders on insect populations. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ intern @ |
Serial |
2304 |
Permanent link to this record |
|
|
|
Author |
Ciach, M., & Fröhlich, A. |
Title |
Ungulates in the city: light pollution and open habitats predict the probability of roe deer occurring in an urban environment |
Type |
Journal Article |
Year |
2019 |
Publication |
Urban Ecosystems |
Abbreviated Journal  |
|
Volume |
22 |
Issue |
3 |
Pages |
513–523 |
Keywords |
Animals; ungulates; Poland; Europe; roe deer; Capreolus capreolus |
Abstract |
Although large and medium-sized herbivorous mammals avoid urbanized areas, they have recently begun to colonize towns and cities. In general, ungulates continue to avoid the centres of urban areas, and utilize mainly their thinly built-up outskirts. While extension of urban development is preventing ungulates from penetrating the urban landscape, the influence of noise and light pollution on the occurrence of mammalian herbivores is still poorly understood. Hence, we investigated the hypothesis that habitat availability shapes the distribution of roe deer Capreolus capreolus and artificial lightening discourages them from penetrating the urban landscape. Roe deer was recorded on 37% of randomly selected sample plots (N = 60) located within the city of Kraków (S Poland). The occupied plots contained significantly more open habitats, woodland patches were larger in them, but proximity to rivers, and noise and light pollution were significantly lower. The logistic regression model revealed that an increasing area of open habitats was positively correlated with the probability of roe deer occurring. However, the artificial lighting at night was negatively correlated with the probability of the species occurring: the negative effect of light pollution was mitigated by the greater area of open habitats. Our study highlights the very considerable potential of light pollution as a predictor of the occurrence of large mammals in the urban landscape. We argue that urbanization and the related artificial lighting at night may be a factor preventing ungulates from penetrating potentially suitable habitats in urban areas. |
Address |
Department of Forest Biodiversity, Institute of Forest Ecology and Silviculture, Faculty of Forestry, University of Agriculture, Kraków, Poland; michal.ciach(at)ur.krakow.pl |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ intern @ |
Serial |
2305 |
Permanent link to this record |
|
|
|
Author |
Seymoure, B. M., Linares, C., & White, J. |
Title |
Connecting spectral radiometry of anthropogenic light sources to the visual ecology of organisms |
Type |
Journal Article |
Year |
2019 |
Publication |
Journal of Zoology |
Abbreviated Journal  |
|
Volume |
308 |
Issue |
2 |
Pages |
93-110 |
Keywords |
Animals; Ecology; color space; ecological consequences; just noticeable difference; light pollution; photoreceptors; radiance; visual models; visual systems |
Abstract |
Humans have drastically altered nocturnal environments with electric lighting. Animals depend on natural night light conditions and are now being inundated with artificial lighting. There are numerous artificial light sources that differ in spectral composition that should affect the perception of these light sources and due to differences in animal visual systems, the differences in color perception of these anthropogenic light sources should vary significantly. The ecological and evolutionary ramifications of these perceptual differences of light sources remain understudied. Here, we quantify the radiance of nine different street lights comprised of four different light sources: Metal Halide, Mercury Vapor, Light Emitting Diodes, and High‐Pressure Sodium and model how five animal visual systems will be stimulated by these light sources. We calculated the number of photons that photoreceptors in different visual systems would detect. We selected five visual systems: avian UV/VIS, avian V/VIS, human, wolf and hawk moth. We included non‐visual photoreceptors of vertebrates known for controlling circadian rhythms and other physiological traits. The nine light types stimulated visual systems and the photoreceptors within the visual systems differently. Furthermore, we modelled the chromatic contrast (Just Noticeable Differences [JNDs]) and color space overlap for each light type comparison for each visual system to see if organisms would perceive the lights as different colors. The JNDs of most light type comparisons were very high, indicating most visual systems would detect all light types as different colors, however mammalian visual systems would perceive many lights as the same color. We discuss the importance of understanding not only the brightness of artificial light types, but also the spectral composition of light types, as most organisms have different visual systems from humans. Thus, for researchers to understand how artificial light sources affect the visual environment of specific organisms and thus mitigate the effects, spectral information is crucial. |
Address |
Department of Biology, Colorado State University, Fort Collins, CO, USA; brett.seymoure(at)gmail.com |
Corporate Author |
|
Thesis |
|
Publisher |
ZSL |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ intern @ |
Serial |
2306 |
Permanent link to this record |
|
|
|
Author |
Garrett, J. K., Donald, P. F., & Gaston, K. J. |
Title |
Skyglow extends into the world’s Key Biodiversity Areas |
Type |
Journal Article |
Year |
2019 |
Publication |
Animal Conservation |
Abbreviated Journal  |
|
Volume |
|
Issue |
|
Pages |
cv.12480 |
Keywords |
Skyglow; Conservation; Biodiversity; Key Biodiversity Area; KBA |
Abstract |
The proportion of the Earth’s surface that experiences a naturally dark environment at night is rapidly declining with the introduction of artificial light. Biological impacts of this change have been documented from genes to ecosystems, and for a wide diversity of environments and organisms. The likely severity of these impacts depends heavily on the relationship between the distribution of artificial night-time lighting and biodiversity. Here, we carry out a global assessment of the overlap between areas of conservation priority and the most recent atlas of artificial skyglow. We show that of the world’s Key Biodiversity Areas (KBAs), less than a third have completely pristine night-time skies, about a half lie entirely under artificially bright skies and only about a fifth contain no area in which night-time skies are not polluted to the zenith. The extent of light pollution of KBAs varies by region, affecting the greatest proportion of KBAs in Europe and the Middle East. Statistical modelling revealed associations between light pollution within KBAs and associated levels of both gross domestic product and human population density. This suggests that these patterns will worsen with continued economic development and growth in the human population |
Address |
Environment & Sustainability Institute, University of Exeter, Penryn, UK; j.k.garrett(at)exeter.ac.uk |
Corporate Author |
|
Thesis |
|
Publisher |
Wiley |
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
English |
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ intern @ |
Serial |
2309 |
Permanent link to this record |
|
|
|
Author |
Peregrym, M., Kónya E. P., & Vasyliuk, O. |
Title |
The impact of artificial light at night (ALAN) on the National Nature Parks, Biosphere and Naturе Reserves of the Steppe Zone and Crimean Mountains within Ukraine |
Type |
Journal Article |
Year |
2018 |
Publication |
Palaearctic Grasslands |
Abbreviated Journal  |
|
Volume |
|
Issue |
|
Pages |
|
Keywords |
Skyglow; Conservation |
Abstract |
Artificial light at night (ALAN) and sky glow are a recognized anthropogenic pressure, but the consequences of this pressure on protected areas within Ukraine are unclear. This research attempted to estimate the level of light pollution on the protected territories of the National Nature Parks (NNPs), Biosphere and Nature Reserves in the Steppe Zone and Crimea Mountains of Ukraine. Kmz layers of
these protected territories and the New World Atlas of Artificial Sky Brightness, through Google Earth Pro, were used to calculate the level of artificial sky brightness for 15 NNPs, three Biosphere Reserves and 10 Nature Reserves. The results show that even some of the most protected areas within the Steppe Zone and Crimean Mountains are impacted by ALAN. Of the studied protected areas 44.2% have a natural dark night sky, 40.1% have artificial brightness ranging between 8 and 16%, and the remainder (15.7%) are polluted with an artificial brightness greater than 16%. Areas with light pollution greater than 16% are often situated near big cities or industrial centers. It was noted that light pollution levels were not taken into account during the creation of any protected areas within Ukraine. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
|
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
IDA @ intern @ |
Serial |
2310 |
Permanent link to this record |