|   | 
Details
   web
Records
Author Garrett, J. K., Donald, P. F., & Gaston, K. J.
Title Skyglow extends into the world’s Key Biodiversity Areas Type Journal Article
Year 2019 Publication Animal Conservation Abbreviated Journal
Volume Issue Pages cv.12480
Keywords Skyglow; Conservation; Biodiversity; Key Biodiversity Area; KBA
Abstract (down) The proportion of the Earth’s surface that experiences a naturally dark environment at night is rapidly declining with the introduction of artificial light. Biological impacts of this change have been documented from genes to ecosystems, and for a wide diversity of environments and organisms. The likely severity of these impacts depends heavily on the relationship between the distribution of artificial night-time lighting and biodiversity. Here, we carry out a global assessment of the overlap between areas of conservation priority and the most recent atlas of artificial skyglow. We show that of the world’s Key Biodiversity Areas (KBAs), less than a third have completely pristine night-time skies, about a half lie entirely under artificially bright skies and only about a fifth contain no area in which night-time skies are not polluted to the zenith. The extent of light pollution of KBAs varies by region, affecting the greatest proportion of KBAs in Europe and the Middle East. Statistical modelling revealed associations between light pollution within KBAs and associated levels of both gross domestic product and human population density. This suggests that these patterns will worsen with continued economic development and growth in the human population
Address Environment & Sustainability Institute, University of Exeter, Penryn, UK; j.k.garrett(at)exeter.ac.uk
Corporate Author Thesis
Publisher Wiley Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2309
Permanent link to this record
 

 
Author Treanor, P. J.
Title A simple propagation law for artificial night-sky illumination Type Journal Article
Year 1973 Publication The Observatory Abbreviated Journal
Volume 93 Issue Pages 117-120
Keywords Skyglow
Abstract (down) The problem of locating new large astronomical observatories in sites which have a suitably dark night sky (artificial excess of the order of omi) is becoming increasingly difficult in Europe and the United States, on account of extensive urban development, the high luminous efficiency of modern discharge lighting, and the scattering of light in an atmosphere contaminated by aerosols. To investigate the artificial illumination of the sky over large regions on the basis of necessarily limited observations, one needs an expression for the zenith brightness produced by towns of known site and distance.

The exact derivation of such a law is exceedingly complex, involving the computation of the radiation transfer in an atmosphere with absorption, multiple scattering, and complicated physical and geometrical parameters. Notwithstanding these difficulties, it is possible to obtain a useful physical insight into the general form of this law by considering a very simplified model, consisting of a homogeneous atmosphere, in which vertical heights are small in relation to the horizontal distances between town and observatory, and which the scattering is limited to a cone of small angle whose axis lies in the direction of the incident beam. The limited scale height and optical thickness of the real atmosphere, and the forward-scattering characteristics of aerosols lend some plausibility to these simplifications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2633
Permanent link to this record
 

 
Author Liu, Q.; Manning, A.J.; Duston, J.
Title Light intensity and suppression of nocturnal plasma melatonin in Arctic charr (Salvelinus alpinus) Type Journal Article
Year 2018 Publication Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology Abbreviated Journal Comp Biochem Physiol A Mol Integr Physiol
Volume in press Issue Pages
Keywords Animals
Abstract (down) The problem of early sexual maturation among farmed Arctic charr and other salmonids can be effectively reduced by 24h light overwinter, provided it is bright enough to over-ride interference from the natural daylength cycle. To determine the threshold light intensity to suppress the nocturnal elevation of plasma melatonin, three groups of individually tagged fish (n=26-28/group ca. 1040g) were reared on 12h light: 12h dark (LD 12:12) and subjected to nighttime light intensities of either 50-65, 0.1-0.3 or 0 (control) lux for five months (November to April). Daytime light intensity was 720-750lx. Diel plasma melatonin profiles in both November and April were similar; mean daytime levels ranged from 20 to 100pg/ml, and nighttime levels were inversely proportional to light intensity. In the control group at 0lx, plasma melatonin increased about four-fold after lights-off, ranging between 320 and 430pg/ml. Nighttime light intensity of 0.1-0.3lx halved plasma melatonin levels to 140-220pg/ml, and 50-65lx further reduced the levels to one quarter of the control group, 68-108pg/ml. Among the lit groups, daytime plasma melatonin levels were about 20-30pg/ml, significantly lower than the nocturnal levels suggesting the diel hormonal rhythm was not completely abolished. Fish grew steadily from about 1100g to 1600g between November and April, independent of light intensity (P=.67). Overall, the study demonstrated the sensitivity of pineal melatonin hormone to different light intensities in Arctic charr.
Address Department of Animal Science and Aquaculture, Dalhousie University, Agricultural Campus, Truro, NS B2N 5E3, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-6433 ISBN Medium
Area Expedition Conference
Notes PMID:30471350 Approved no
Call Number GFZ @ kyba @ Serial 2111
Permanent link to this record
 

 
Author Abay, K.A.; Amare, M.
Title Night light intensity and women's body weight: Evidence from Nigeria Type Journal Article
Year 2018 Publication Economics and Human Biology Abbreviated Journal Econ Hum Biol
Volume 31 Issue Pages 238-248
Keywords Remote Sensing; Human Health; Adolescent; Adult; Body Mass Index; *Body Weight; Cross-Sectional Studies; Female; Health Surveys; Humans; Lighting/*statistics & numerical data; Middle Aged; Nigeria/epidemiology; Obesity/epidemiology; Overweight/*epidemiology; Prevalence; *Urbanization; Young Adult; *Bmi; *Nigeria; *Night light; *Obesity; *Overweight; *Urbanization
Abstract (down) The prevalence of overweight and obesity are increasing in many African countries and hence becoming regional public health challenges. We employ satellite-based night light intensity data as a proxy for urbanization to investigate the relationship between urbanization and women's body weight. We use two rounds of the Demographic and Health Survey data from Nigeria. We employ both nonparametric and parametric estimation approaches that exploit both the cross-sectional and longitudinal variations in night light intensities. Our empirical analysis reveals nonlinear relationships between night light intensity and women's body weight measures. Doubling the sample's average level of night light intensity is associated with up to a ten percentage point increase in the probability of overweight. However, despite the generally positive relationship between night light intensity and women's body weight, the strength of the relationship varies across the assorted stages of night light intensity. Early stages of night light intensity are not significantly associated with women's body weight, while higher stages of nightlight intensities are associated with higher rates of overweight and obesity. Given that night lights are strong predictors of urbanization and related economic activities, our results hint at nonlinear relationships between various stages of urbanization and women's body weight.
Address International Food Policy Research Institute (IFPRI), USA. Electronic address: M.Amare@cgiar.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1570-677X ISBN Medium
Area Expedition Conference
Notes PMID:30312904 Approved no
Call Number GFZ @ kyba @ Serial 2714
Permanent link to this record
 

 
Author Willmott, N.J.; Henneken, J.; Selleck, C.J.; Jones, T.M.
Title Artificial light at night alters life history in a nocturnal orb-web spider Type Journal Article
Year 2018 Publication PeerJ Abbreviated Journal
Volume 6 Issue Pages e5599
Keywords Animals
Abstract (down) The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, and this was largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-web spiders in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2167-8359 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2023
Permanent link to this record