toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bará, S. url  doi
openurl 
  Title Black-body luminance and magnitudes per square arcsecond in the Johnson-Cousins BVR photometric bands Type Journal Article
  Year 2019 Publication Photonics Letters of Poland Abbreviated Journal Photon. Lett. Pl.  
  Volume 11 Issue 3 Pages 63  
  Keywords Skyglow; night sky brightness; luminance; photometric  
  Abstract (up) A relevant amount of light pollution studies deal with the unwanted visual effects of artificial light at night, including the anthropogenic luminance of the sky that hinders the observation of the celestial bodies which are a main target of ground-based astrophysical research, and a key asset of the intangible heritage of humankind. Most quantitative measurements and numerical models, however, evaluate the anthropogenic sky radiance in any of the standard Johnson-Cousins UBVRI photometric bands, generally in the V one. Since the Johnson-Cousins V band is not identical with the visual CIE V-lambda used to assess luminance, the conversion between these two photometric systems turns out to be spectrum-dependent. Given its interest for practical applications, in this Letter we provide the framework to perform this conversion and the transformation constants for black-body spectra of different absolute temperatures.  
  Address Dept. Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia  
  Corporate Author Thesis  
  Publisher Photonics Society of Poland Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2080-2242 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2685  
Permanent link to this record
 

 
Author Barducci, A.; Marcoionni, P.; Pippi, I.; Poggesi, M. url  doi
openurl 
  Title Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers Type Journal Article
  Year 2003 Publication Applied Optics Abbreviated Journal Appl. Opt.  
  Volume 42 Issue 21 Pages 4349  
  Keywords Remote Sensing  
  Abstract (up) A remote-sensing campaign was performed in September 2001 at nighttime under clear-sky conditions before moonrise to assess the level of light pollution of urban and industrial origin. Two hyperspectral sensors, namely, the Multispectral Infrared and Visible Imaging Spectrometer and the Visible Infrared Scanner-200, which provide spectral coverage from the visible to the thermal infrared, were flown over the Tuscany coast (Italy) on board a Casa 212 airplane. The acquired images were processed to produce radiometrically calibrated data, which were then analyzed and compared with ground-based spectral measurements. Calibrated data acquired at high spectral resolution (∼2.5 nm) showed a maximum scene brightness almost of the same order of magnitude as that observed during similar daytime measurements, whereas their average luminosity was 3 orders of magnitude lower. The measurement analysis confirmed that artificial illumination hinders astronomical observations and produces noticeable effects even at great distances from the sources of the illumination.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6935 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2438  
Permanent link to this record
 

 
Author Kinzey, B.R.; Perrin, T.E.; Miller, N.J.; Kocifaj, M.; Aubé, M.; Lamphar, H.A. openurl 
  Title An investigation of LED street lighting's impact on sky glow Type Journal Article
  Year 2017 Publication Abbreviated Journal  
  Volume PNNL-26411 Issue Pages  
  Keywords Skyglow; Lighting  
  Abstract (up) A significant amount of public attention has recently focused on perceived impacts of converting street lighting from incumbent lamp-based products to LED technology. Much of this attention pertains to the higher content of short wavelength light (commonly referred to as “blue light”) of LEDs and its attendant influences on sky glow (a brightening of the night sky that can interfere with astronomical observation and may be associated with a host of other issues). The complexity of this topic leads to common misunderstandings and misperceptions among the public, and for this reason the U.S. Department of Energy Solid-State Lighting Program embarked on a study of sky glow using a well-established astronomical model to investigate some of the primary factors influencing sky glow. This report details the results of the investigation and attempts to present those results in terms accessible to the general lighting community. The report also strives to put the results into a larger context, and help educate interested readers on various topics relevant to the issues being discussed.  
  Address  
  Corporate Author Pacific Northwest National Lab. (PNNL), Richland, WA (United States) Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2014  
Permanent link to this record
 

 
Author Leise, T.L.; Goldberg, A.; Michael, J.; Montoya, G.; Solow, S.; Molyneux, P.; Vetrivelan, R.; Harrington, M.E. url  doi
openurl 
  Title Recurring circadian disruption alters circadian clock sensitivity to resetting Type Journal Article
  Year 2018 Publication The European Journal of Neuroscience Abbreviated Journal Eur J Neurosci  
  Volume in press Issue Pages  
  Keywords Animals  
  Abstract (up) A single phase advance of the light:dark (LD) cycle can temporarily disrupt synchrony of neural circadian rhythms within the suprachiasmatic nucleus (SCN) and between the SCN and peripheral tissues. Compounding this, modern life can involve repeated disruptive light conditions. To model chronic disruption to the circadian system, we exposed male mice to more than a month of a 20 h light cycle (LD10:10), which mice typically cannot entrain to. Control animals were housed under LD12:12. We measured locomotor activity and body temperature rhythms in vivo, and rhythms of PER2::LUC bioluminescence in SCN and peripheral tissues ex vivo. Unexpectedly, we discovered strong effects of the time of dissection on circadian phase of PER2::LUC bioluminescent rhythms, which varied across tissues. White adipose tissue was strongly reset by dissection, while thymus phase appeared independent of dissection timing. Prior light exposure impacted the SCN, resulting in strong resetting of SCN phase by dissection for mice housed under LD10:10, and weak phase shifts by time of dissection in SCN from control LD12:12 mice. These findings suggest that exposure to circadian disruption may desynchronize SCN neurons, increasing network sensitivity to perturbations. We propose that tissues with a weakened circadian network, such as the SCN under disruptive light conditions, or with little to no coupling, e.g., some peripheral tissues, will show increased resetting effects. In particular, exposure to light at inconsistent circadian times on a recurring weekly basis disrupts circadian rhythms and alters sensitivity of the SCN neural pacemaker to dissection time. This article is protected by copyright. All rights reserved.  
  Address Neuroscience Program, Smith College, Northampton, MA, 01063, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-816X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30269396 Approved no  
  Call Number GFZ @ kyba @ Serial 2036  
Permanent link to this record
 

 
Author Shi, L.; Foody, G.M.; Boyd, D.S.; Girindran, R.; Wang, L.; Du, Y.; Ling, F. url  doi
openurl 
  Title Night-time lights are more strongly related to urban building volume than to urban area Type Journal Article
  Year 2020 Publication Remote Sensing Letters Abbreviated Journal Remote Sensing Letters  
  Volume 11 Issue 1 Pages 29-36  
  Keywords Remote Sensing; Urban; Night Lights  
  Abstract (up) A strong relationship between night-time light (NTL) data and the areal extent of urbanized regions has been observed frequently. As urban regions have an important vertical dimension, it is hypothesized that the strength of the relationship with NTL can be increased by consideration of the volume rather than simply the area of urbanized land. Relationships between NTL and the area and volume of urbanized land were determined for a set of towns and cities in the UK, the conterminous states of the USA and countries of the European Union. Strong relationships between NTL and the area urbanized were observed, with correlation coefficients ranging from 0.9282 to 0.9446. Higher correlation coefficients were observed for the relationship between NTL and urban building volume, ranging from 0.9548 to 0.9604; The difference in the correlations obtained with volume and with area was statistically significant at the 95% level of confidence. Studies using NTL data may be strengthened by consideration of the volume rather than just area of urbanized land.  
  Address Key Laboratory for Environment and Disaster Monitoring and Evaluation, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China; shilingfei14(at)mails.ucas.ac.cn  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2150-704X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2783  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: