toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Xie, Y.; Weng, Q. url  doi
openurl 
  Title Detecting urban-scale dynamics of electricity consumption at Chinese cities using time-series DMSP-OLS (Defense Meteorological Satellite Program-Operational Linescan System) nighttime light imageries Type Journal Article
  Year 2016 Publication Energy Abbreviated Journal Energy  
  Volume 100 Issue Pages 177-189  
  Keywords Remote Sensing  
  Abstract (up) A better understanding of the spatiotemporal pattern of energy consumption at the urban scale is significant in the interactions between economic activities and environment. This study assessed the spatiotemporal dynamics of EC (electricity consumption) in UC (urban cores) and SR (suburban regions) in China from 2000 to 2012 by using remotely sensed NTL (nighttime light) imagery. Firstly, UC and SR were extracted using a threshold technique. Next, provincial level model was calibrated yearly by using Enhanced Vegetation Index and population-adjusted NTL data as independent variables. These models were then applied for pixel-based estimation to obtain time-series EC data sets. Finally, the spatiotemporal pattern of EC in both UC and SR were explored. The results indicated that the proportion of EC in urban areas rose from 50.6% to 71.32%, with a growing trend of spatial autocorrelation. Cities with high urban EC were either located in the coastal region or belonged to provincial capitals. These cities experienced a moderate to a rapid growth of EC in both UC and SR, while a slow growth was detected for the majority of western and northeastern cities. The findings suggested that EC in SR was more crucial for sustainable energy development in China.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0360-5442 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2489  
Permanent link to this record
 

 
Author Fotios, S.; Monteiro, A.L.; Uttley, J. url  doi
openurl 
  Title Evaluation of pedestrian reassurance gained by higher illuminances in residential streets using the day–dark approach Type Journal Article
  Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology  
  Volume in press Issue Pages  
  Keywords Vision; Psychology; Security  
  Abstract (up) A field study was conducted to investigate how changes in the illuminance affect pedestrian reassurance when walking after dark in an urban location. The field study was conducted in daytime and after dark in order to employ the day–dark approach to analysis of optimal lighting. The results suggest that minimum illuminance is a better predictor of reassurance than is mean illuminance. For a day–dark difference of 0.5 units on a 6-point response scale, the results suggest a minimum horizontal illuminance of approximately 2.0 lux.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1477-1535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2159  
Permanent link to this record
 

 
Author Durrant, J.; Green, M.P.; Jones, T.M. url  doi
openurl 
  Title Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus Type Journal Article
  Year 2019 Publication Insect Science Abbreviated Journal Insect Sci  
  Volume in press Issue Pages 744-7917.12665  
  Keywords Animals  
  Abstract (up) A functioning immune system is crucial for protection against disease and illness, yet increasing evidence suggests that species living in urban areas could be suffering from immune suppression, due to the presence of artificial light at night (ALAN). This study examined the effects of ecologically relevant levels of ALAN on three key measures of immune function (haemocyte concentration, lytic activity, and phenoloxidase activity) using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. We reared crickets under an ecologically relevant daily light-cycle consisting of 12 hr bright daylight (2600 lx) followed by either 12 h darkness (0 lx) or dim environmentally-relevant ALAN (1, 10, 100 lx), and then assessed immune function at multiple time points throughout adult life using haemolymph samples. We found that the presence of ALAN had a clear negative effect on haemocytes, while the effects on lytic activity and phenoloxidase activity were more complex or largely unaffected by ALAN. Furthermore, the effects of lifelong exposure to ALAN of 1 lx were comparable to those of 10 and 100 lx. Our data suggest that the effects of ALAN could be large and widespread, and such reductions in the core immune response of individuals will likely have greater consequences for fitness and survival under more malign conditions, such as those of the natural environment. This article is protected by copyright. All rights reserved.  
  Address The School of BioSciences, Faculty of Science, University of Melbourne, Victoria, 3010, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1672-9609 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30720239 Approved no  
  Call Number GFZ @ kyba @ Serial 2196  
Permanent link to this record
 

 
Author Rebke, M.; Dierschke, V.; Weiner, C.N.; Aumüller, R.; Hill, K.; Hill, R. url  doi
openurl 
  Title Attraction of nocturnally migrating birds to artificial light: The influence of colour, intensity and blinking mode under different cloud cover conditions Type Journal Article
  Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 233 Issue Pages 220-227  
  Keywords Animals  
  Abstract (up) A growing number of offshore wind farms have led to a tremendous increase in artificial lighting in the marine environment. This study disentangles the connection of light characteristics, which potentially influence the reaction of nocturnally migrating passerines to artificial illumination under different cloud cover conditions. In a spotlight experiment on a North Sea island, birds were exposed to combinations of light colour (red, yellow, green, blue, white), intensity (half, full) and blinking mode (intermittent, continuous) while measuring their number close to the light source with thermal imaging cameras.

We found that no light variant was constantly avoided by nocturnally migrating passerines crossing the sea. The number of birds did neither differ between observation periods with blinking light of different colours nor compared to darkness. While intensity did not influence the number attracted, birds were drawn more towards continuous than towards blinking illumination, when stars were not visible. Red continuous light was the only exception that did not differ from the blinking counterpart. Continuous green, blue and white light attracted significantly more birds than continuous red light in overcast situations.

Our results suggest that light sources offshore should be restricted to a minimum, but if lighting is needed, blinking light is to be preferred over continuous light, and if continuous light is required, red light should be applied.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2255  
Permanent link to this record
 

 
Author Stone, J.E.; Phillips, A.J.K.; Ftouni, S.; Magee, M.; Howard, M.; Lockley, S.W.; Sletten, T.L.; Anderson, C.; Rajaratnam, S.M.W.; Postnova, S. url  doi
openurl 
  Title Generalizability of A Neural Network Model for Circadian Phase Prediction in Real-World Conditions Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 11001  
  Keywords Human Health; Instrumentation  
  Abstract (up) A neural network model was previously developed to predict melatonin rhythms accurately from blue light and skin temperature recordings in individuals on a fixed sleep schedule. This study aimed to test the generalizability of the model to other sleep schedules, including rotating shift work. Ambulatory wrist blue light irradiance and skin temperature data were collected in 16 healthy individuals on fixed and habitual sleep schedules, and 28 rotating shift workers. Artificial neural network models were trained to predict the circadian rhythm of (i) salivary melatonin on a fixed sleep schedule; (ii) urinary aMT6s on both fixed and habitual sleep schedules, including shift workers on a diurnal schedule; and (iii) urinary aMT6s in rotating shift workers on a night shift schedule. To determine predicted circadian phase, center of gravity of the fitted bimodal skewed baseline cosine curve was used for melatonin, and acrophase of the cosine curve for aMT6s. On a fixed sleep schedule, the model predicted melatonin phase to within +/- 1 hour in 67% and +/- 1.5 hours in 100% of participants, with mean absolute error of 41 +/- 32 minutes. On diurnal schedules, including shift workers, the model predicted aMT6s acrophase to within +/- 1 hour in 66% and +/- 2 hours in 87% of participants, with mean absolute error of 63 +/- 67 minutes. On night shift schedules, the model predicted aMT6s acrophase to within +/- 1 hour in 42% and +/- 2 hours in 53% of participants, with mean absolute error of 143 +/- 155 minutes. Prediction accuracy was similar when using either 1 (wrist) or 11 skin temperature sensor inputs. These findings demonstrate that the model can predict circadian timing to within +/- 2 hours for the vast majority of individuals on diurnal schedules, using blue light and a single temperature sensor. However, this approach did not generalize to night shift conditions.  
  Address School of Physics, University of Sydney, Sydney, New South Wales, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31358781; PMCID:PMC6662750 Approved no  
  Call Number GFZ @ kyba @ Serial 2667  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: