toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Malek, I.; Haim, A. url  doi
openurl 
  Title Bright artificial light-at-night is associated with increased body mass, poor reproductive success, and compromised disease tolerance in Australian budgerigars (Melopsittacus undulatus) Type Journal Article
  Year 2019 Publication Integrative Zoology Abbreviated Journal Integr Zool  
  Volume 14 Issue 6 Pages 589-603  
  Keywords Animals; Birds; Australian budgerigars; Melopsittacus undulatus; Photoperiod; captive birds  
  Abstract Artificial light-at-night (ALAN) can cause circadian disruption and result in adverse behavioral and ecological effects in free-living birds, but studies on captive pet birds as companion animals have been infrequent. We studied the effects of exposure to bright ALAN on body mass, melatonin sulfate levels, reproduction, and disease severity in Australian budgerigars (Melopsittacus undulatus) kept in captivity. During the experiment, birds were kept under outdoor temperature, humidity, and natural photoperiod from September to December. 48 birds were equally split into four groups (6 mating pairs each) and concurrently exposed to ALAN of 200 lux with different duration (0, 30, 60, and 90 min). Monthly observations were recorded for all dependent parameters. ALAN exposure increased mass gain and suppressed melatonin levels in a dose-dependent manner, especially during December. In addition, ALAN exposure in all duration groups decreased egg production and reduced hatchability from 61+/-14% in the ALAN-unexposed control group to 0% in the ALAN-exposed birds. Disease severity was also found to increase in line with the duration of ALAN exposure. In captive M. undulatus, ALAN exposure was demonstrated to affect photoperiodic regulation with subsequent excess mass gain, reproduction impairment, and increased susceptibility to infections plausibly through duration dose-dependent suppression of melatonin. To the best of our knowledge, this is the first study to demonstrate a possible association between acute bright ALAN of increasing duration and both natural development of infections as well as reproductive cessation in captive birds. Our findings could be used to improve breeding conditions of captive birds.  
  Address (down) The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa 31905, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1749-4869 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31149779 Approved no  
  Call Number GFZ @ kyba @ Serial 2512  
Permanent link to this record
 

 
Author Green, A.; Barak, S.; Shine, L.; Kahane, A.; Dagan, Y. url  doi
openurl 
  Title Exposure by males to light emitted from media devices at night is linked with decline of sperm quality and correlated with sleep quality measures Type Journal Article
  Year 2020 Publication Chronobiology International Abbreviated Journal Chronobiol Int  
  Volume 37 Issue 3 Pages 414-424  
  Keywords Human Health; *Alan; *Sleep; *digital device; *light; *male fertility; *melatonin; *sleepiness; *sperm quality  
  Abstract The last several decades have been characterized by the widespread usage of digital devices, especially smartphones. At the same time, there have been reports of both decline in sleep duration and quality and male fertility decline. The aim of this study was to assess the relationship between evening exposure to the light-emitting screens of digital media devices and measures of both sleep and sperm quality. Semen samples were obtained from 116 men undergoing fertility evaluation for the following sperm variables: volume (mL), pH, sperm concentration (million/mL), motility percentage (progressive% + non-progressive motility%), and total sperm count. Exposure to the screens of electronic devices and sleep habits was obtained by means of a questionnaire. Smartphone and tablet usage in the evening and after bedtime was negatively correlated with sperm motility (-0.392; -0.369; p < .05), sperm progressive motility (-0.322; -0.299; p < .05), and sperm concentration (-0.169; p < .05), and positively correlated with the percentage of immotile sperm (0.382; 0.344; p < .05). In addition, sleep duration was positively correlated with sperm total and progressive motility (0.249; 0.233; p < .05) and negatively correlated with semen pH (-0.349; p < .05). A significant negative correlation was observed between subjective sleepiness and total and progressive motility (-0.264; p < .05) as well as total motile sperm number (-0.173; p < .05). The results of this study support a link between evening and post-bedtime exposure to light-emitting digital media screens and sperm quality. Further research is required to establish the proposed causative link and may lead to the future development of relevant therapeutic and lifestyle interventions.  
  Address (down) The Human Biology Department, Haifa University, Haifa, Israel; amitg ( at ) assuta.co.il  
  Corporate Author Thesis  
  Publisher Taylor & Francis Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-0528 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32126861 Approved no  
  Call Number IDA @ john @ Serial 3410  
Permanent link to this record
 

 
Author Sun, B.; Zhang, Y.; Zhou, Q.; Gao, D. url  doi
openurl 
  Title Street-Scale Analysis of Population Exposure to Light Pollution Based on Remote Sensing and Mobile Big Data-Shenzhen City as a Case Type Journal Article
  Year 2020 Publication Sensors (Basel, Switzerland) Abbreviated Journal Sensors (Basel)  
  Volume 20 Issue 9 Pages  
  Keywords Remote Sensing; Luojia 1-01; NTL remote sensing; light pollution; population exposure to light pollution; residential area  
  Abstract Most studies on light pollution are based on light intensity retrieved from nighttime light (NTL) remote sensing with less consideration of the population factors. Furthermore, the coarse spatial resolution of traditional NTL remote sensing data limits the refined applications in current smart city studies. In order to analyze the influence of light pollution on populated areas, this study proposes an index named population exposure to light pollution (PELP) and conducts a street-scale analysis to illustrate spatial variation of PELP among residential areas in cites. By taking Shenzhen city as a case, multi-source data were combined including high resolution NTL remote sensing data from the Luojia 1-01 satellite sensor, high-precision mobile big data for visualizing human activities and population distribution as well as point of interest (POI) data. Results show that the main influenced areas of light pollution are concentrated in the downtown and core areas of newly expanded areas with obvious deviation corrected like traditional serious light polluted regions (e.g., ports). In comparison, commercial-residential mixed areas and village-in-city show a high level of PELP. The proposed method better presents the extent of population exposure to light pollution at a fine-grid scale and the regional difference between different types of residential areas in a city.  
  Address (down) TalkingData Co., Ltd., Beijing 100027, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1424-8220 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32403250 Approved no  
  Call Number GFZ @ kyba @ Serial 2921  
Permanent link to this record
 

 
Author Mortazavi, S.A.R.; Faraz, M.; Laalpour, S.; Kaveh Ahangar, A.; Eslami, J.; Zarei, S.; Mortazavi, G.; Gheisari, F.; Mortazavi, S.M.J. url  doi
openurl 
  Title Exposure to Blue Light Emitted from Smartphones in an Environment with Dim Light at Night Alters the Reaction Time of University Students Type Journal Article
  Year 2019 Publication Shiraz E-Medical Journal Abbreviated Journal Shiraz E-Med J  
  Volume Issue Pages e88230  
  Keywords Human Health; Blue light; smartphone; Reaction Time; shift work  
  Abstract Background: Substantial evidence now indicates that exposure to visible light at night can be linked to a wide spectrum of disorders ranging from obesity to cancer. More specifically, it has been shown that exposure to short wavelengths in the blue region at night is associated with adverse health effects, such as sleep problems.

Objectives: This study aimed at investigating if exposure to blue light emitted from common smartphones in an environment with dim light at night alters human reaction time.

Methods: Visual reaction time (VRT) of 267 male and female university students were recorded using a simple blind computer-assisted VRT test, respectively. Volunteer university students, who provided their informed consent were randomly divided to two groups of control (N = 126 students) and intervention (N = 141 students). All participants were asked to go to bed at 23:00. Participants in the intervention group were asked to use their smartphones from 23:00 to 24:00 (watching a natural life documentary movie for 60 minutes), while the control group only stayed in bed under low lighting condition, i.e. dim light. Before starting the experiment and after 60 minutes of smartphone use, reaction time was recorded in both groups.

Results: The mean reaction times in the intervention and the control groups before the experiment (23:00) did not show a statistically difference (P = 0.449). The reaction time in the intervention group significantly increased from 412.64 ± 105.60 msec at 23:00 to 441.66 ± 125.78 msec at 24:00 (P = 0.0368) while in the control group, there was no statistically significant difference between the mean reaction times at 23:00 and 24:00.

Conclusions: To the best of the author’s knowledge, this is the first study, which showed that exposure to blue-rich visible light emitted from widely used smartphones increases visual reaction time, which would eventually result in a delay in human responses to different hazards. These findings indicate that people, such as night shift or on call workers, who need to react to stresses rapidly should avoid using their smartphones in a dim light at night.
 
  Address (down) Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1735-1391 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2534  
Permanent link to this record
 

 
Author Falchi, F.; Furgoni, R.; Gallaway, T.A.; Rybnikova, N.A.; Portnov, B.A.; Baugh, K.; Cinzano, P.; Elvidge, C.D. url  doi
openurl 
  Title Light pollution in USA and Europe: The good, the bad and the ugly Type Journal Article
  Year 2019 Publication Journal of Environmental Management Abbreviated Journal Journal of Environmental Management  
  Volume 248 Issue Pages 109227  
  Keywords Remote Sensing; gross domestic product; light pollution; Economics  
  Abstract Light pollution is a worldwide problem that has a range of adverse effects on human health and natural eco-systems. Using data from the New World Atlas of Artificial Night Sky Brightness, VIIRS-recorded radiance and Gross Domestic Product (GDP) data, we compared light pollution levels, and the light flux to the population size and GDP at the State and County levels in the USA and at Regional (NUTS2) and Province (NUTS3) levels inEurope. We found 6800-fold differences between the most and least polluted regions in Europe, 120-fold differences in their light flux per capita, and 267-fold differences influx per GDP unit. Yet, we found even greater differences between US counties: 200,000-fold differences in sky pollution, 16,000-fold differences in light flux per capita, and 40,000-fold differences in light flux per GDP unit. These findings may inform policy-makers, helping to reduce energy waste and adverse environmental, cultural and health consequences associated with light pollution.  
  Address (down) STIL – Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Light Pollution Science and Technology Institute, Thiene, Italy; Italy. falchi@lightpollution.it(at)istil.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2593  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: