|   | 
Details
   web
Records
Author Mortazavi, S.A.R., Parhoodeh, S., Hosseini, M.A., Arabi, H., Malakooti, H., Nematollahi, S., Mortazavi, G., Darvish, L., Mortazavi, S.M.J.
Title Blocking Short-Wavelength Component of the Visible Light Emitted by Smartphones’ Screens Improves Human Sleep Quality Type Journal Article
Year 2018 Publication Journal of Biomedical Physics and Engineering Abbreviated Journal
Volume 8 Issue 4 Pages 375-380
Keywords Human Health
Abstract Background: It has been shown that short-wavelength blue component of the visible light spectrum can alter the circadian rhythm and suppress the level of melatonin hormone. The short-wavelength light emitted by smartphones’ screens can affect the sleep quality of the people who use these devices at night through suppression of melatonin.

Objectives: In this study, we examined the effects of covering the screens of smartphones with different filters (changing the effective wavelength of the light) on sleep delay time in 43 healthy students.

Materials and Methods: Volunteer students were asked to go to bed at 23:00 and to use their mobile phones in bed for watching a natural life documentary movie for 60 minutes. No filter was used for one night while amber and blue filters were used for other 2 nights. Photospectrometry method was used to determine the output spectrum of the light passing through the filters used for covering the screens of the mobile phones. The order for utilizing amber or blue filters or using no filter was selected randomly. After 1 hour, the participants were asked to record their sleep delay time measured by a modified form of sleep time record sheet.

Results: The mean sleep delay time for the “no-filter” night was 20.84±9.15 minutes, while the sleep delay times for the nights with amber and blue filters were 15.26±1.04 and 26.33±1.59 minutes, respectively.

Conclusion: The findings obtained in this study support this hypothesis that blue light possibly suppresses the secretion of melatonin more than the longer wavelengths of the visible light spectrum. Using amber filter in this study significantly improved the sleep quality. Altogether, these findings lead us to this conclusion that blocking the short-wavelength component of the light emitted by smartphones’ screens improves human sleep.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2077
Permanent link to this record
 

 
Author Uysal, C.; Maktav, D.; Small, C.
Title Mapping Urban Growth and Its Relation to Seismic Hazards in Istanbul Type Journal Article
Year 2018 Publication Journal of the Indian Society of Remote Sensing Abbreviated Journal J Indian Soc Remote Sens
Volume 46 Issue 8 Pages 1307-1322
Keywords Remote Sensing
Abstract In Istanbul, one of the most densely populated cities of Turkey, the population has grown rapidly over the last 30 years. In addition to being one of the rapidly flourishing cities in Europe, the city is positioned on the seismically active North Anatolian Fault (NAF). The form and rate of Istanbul’s fast urban growth has serious implications for seismic hazards. There have been some studies to map lateral urban growth for the city but they do not give satisfactory information about vertical urban growth and seismic hazards. We use DMSP night lights and Landsat data to map changes in land cover-land use in and around the city since 1984, and determine relations of these changes with the NAF. Changes in land use and intensity of development are identified by changes in night light brightness while changes in land cover are identified by changes in land surface reflectance. Aggregate changes in reflectance are represented as changes in subpixel mixtures of the most functionally and spectrally distinct spectral endmembers of land cover. Using standardized global endmembers, SVD composite images were produced for 1984, 2000 and 2011 and fraction change (δSVD) maps were produced for the decadal intervals. The results show that most of the urban expansion has occurred near the NAF. This has serious implications for seismic hazards in the future if the progression of large earthquakes continues to move westward toward the city.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-660X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2078
Permanent link to this record
 

 
Author Cao, Y.; Zhang, J.; Yang, M.; Guo, B.; Liu, M.; Yang, L.; Qu, J.; Gao, P.
Title Analysis of Lighting Changes in the Tourist City Edogawa Using Nighttime Light Data Type Journal Article
Year 2018 Publication Journal of the Indian Society of Remote Sensing Abbreviated Journal J Indian Soc Remote Sens
Volume 46 Issue 10 Pages 1617-1623
Keywords Remote Sensing
Abstract When assessing remote sensing data, nighttime light data have shortcomings that can be attributed to sensor limitations and the influence of the natural environment. Signal leakage errors in nighttime light data were identified in this study. A regression model was created to reduce signal leakage error by selecting sampling points in coastal area. Lighting variations in Edogawa between 2008 and 2013 were compared based on the Defense Meteorological Satellite Program’s nighttime light data. The lighting variation characteristics in Edogawa from 1992 to 2012 at 5-year intervals were also analyzed. The results show that the 2002 FIFA World Cup held in Japan led Edogawa’s light digital number values to peak in 2002. The annual Edogawa lighting changes from 2007 to 2013 were also explored. The 2008 global financial crisis led to the lowest compounded night light index and average digital number in Edogawa during these 7 years.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-660X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2079
Permanent link to this record
 

 
Author Foth, M., Caldwell, G.A.
Title More-than-human media architecture Type Journal Article
Year 2018 Publication Abbreviated Journal
Volume Issue Pages
Keywords Architecture; Lighting; Planning
Abstract We consider some of the planetary conditions and global circumstances that both research and practice of media architecture are embedded within, such as climate change, pollution, resource consumption, and loss of biodiversity. While there has been a notable increase in emphasis on participation and engagement in design and use, with the aim to increase the involvement of diverse and often marginalised citizens, a human-centred approach to media architecture comes with its own set of problems. In this paper, we want to draw the attention of the media architecture community to the fallacy of human exceptionalism and anthropocentrism. We present a critical review of examples of media architecture projects and installations that question our understanding of urban space as separate from nature, and designed primarily for humans and just humans. Informed by studies in disciplines such as science and technology studies, critical geography, urban planning, and interaction design, we use insights derived from our review to discuss ways towards a more-than-human approach to media architecture. We conclude by proposing for discussion nascent design considerations for media architecture to go beyond the needs of just humans and to consider new ways to appreciate and cater for our broader ecological entanglements with plants, animals, and the environment at large.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Media Architecture Biennale, 13-16 November 2018, Beijing, China
Notes Approved no
Call Number GFZ @ kyba @ Serial 2081
Permanent link to this record
 

 
Author Eccard, J.A.; Scheffler, I.; Franke, S.; Hoffmann, J.; Leather, S.; Stewart, A.
Title Off-grid: solar powered LED illumination impacts epigeal arthropods Type Journal Article
Year 2018 Publication Insect Conservation and Diversity Abbreviated Journal Insect Conserv Divers
Volume 11 Issue 6 Pages 600-607
Keywords Animals; Ecology
Abstract Advances in LED technology combined with solar, storable energy bring light to places remote from electricity grids. Worldwide more than 1.3 billion of people are living off‐grid, often in developing regions of high insect biodiversity. In developed countries, dark refuges for wildlife are threatened by ornamental garden lights. Solar powered LEDs (SPLEDs) are cheaply available, dim, and often used to illuminate foot paths, but little is known on their effects on ground living (epigeal) arthropods.

We used off‐the‐shelf garden lamps with a single ‘white’ LED (colour temperature 7250 K) to experimentally investigate effects on attraction and nocturnal activity of ground beetles (Carabidae).

We found two disparate and species‐specific effects of SPLEDs. (i) Some nocturnal, phototactic species were not reducing activity under illumination and were strongly attracted to lamps (>20‐fold increase in captures compared to dark controls). Such species aggregate in lit areas and SPLEDs may become ecological traps, while the species is drawn from nearby, unlit assemblages. (ii) Other nocturnal species were reducing mobility and activity under illumination without being attracted to light, which may cause fitness reduction in lit areas.

Both reactions offer mechanistic explanations on how outdoor illumination can change population densities of specific predatory arthropods, which may have cascading effects on epigeal arthropod assemblages. The technology may thus increase the area of artificial light at night (ALAN) impacting insect biodiversity.

Measures are needed to mitigate effects, such as adjustment of light colour temperature and automated switch‐offs.
Address (up)
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1752458X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2085
Permanent link to this record