toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Wanjiru Mbugua, S.; Hay Wong, C.; Ratnayeke, S. url  doi
openurl 
  Title Effects of artificial light on the larvae of the firefly Lamprigera sp. in an urban city park, Peninsular Malaysia Type Journal Article
  Year 2019 Publication Journal of Asia-Pacific Entomology Abbreviated Journal Journal of Asia-Pacific Entomology  
  Volume 32 Issue 1 Pages 82-85  
  Keywords Animals; Fireflies; Lamprigera  
  Abstract Firefly populations are threatened globally by habitat alteration, pesticide use, and anthropogenic sources of light. Lamprigera fireflies were recently reported at an urban city park in Kuala Lumpur, Peninsular Malaysia. Here we report on the responses of Lamprigera larvae to artificial light from street lamps on paved park trails. Larvae were located farther from artificial light sources when street lamps were illuminated than when they were not, and mostly where light intensities were lowest, off park trails. Larvae that were located within the direct field of illumination tended to be immobile, whereas, when street lamps were turned off, they actively travelled paved trails. Larvae positioned directly in the path of downwelling light from street lamps at dusk may therefore experience an effectively longer diurnal period, limited time for active foraging, and greater exposure to pedestrian traffic.  
  Address Department of Biological Sciences, Sunway University, Bandar Sunway DE 47500, Selangor, Malaysia; samanth.m(at)  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1226-8615 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2753  
Permanent link to this record
 

 
Author (down) Wang,; Sutton,; Qi, url  doi
openurl 
  Title Global Mapping of GDP at 1 km2 Using VIIRS Nighttime Satellite Imagery Type Journal Article
  Year 2019 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi  
  Volume 8 Issue 12 Pages 580  
  Keywords Remote Sensing  
  Abstract Frequent and rapid spatially explicit assessment of socioeconomic development is critical for achieving the Sustainable Development Goals (SDGs) at both national and global levels. Over the past decades, scientists have proposed many methods for estimating human activity on the Earth’s surface at various spatiotemporal scales using Defense Meteorological Satellite Program Operational Line System (DMSP-OLS) nighttime light (NTL) data. However, the DMSP-OLS NTL data and the associated processing methods have limited their reliability and applicability for systematic measuring and mapping of socioeconomic development. This study utilized Visible Infrared Imaging Radiometer Suite (VIIRS) NTL and the Isolation Forest machine learning algorithm for more intelligent data processing to capture human activities. We used machine learning and NTL data to map gross domestic product (GDP) at 1 km2. We then used these data products to derive inequality indexes (e.g., Gini coefficients) at nationally aggregate levels. This flexible approach processes the data in an unsupervised manner at various spatial scales. Our assessments show that this method produces accurate subnational GDP data products for mapping and monitoring human development uniformly across the globe.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2220-9964 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2787  
Permanent link to this record
 

 
Author (down) Wang, X.; Liu, G.; Coscieme, L.; Giannetti, B.F.; Hao, Y.; Zhang, Y.; Brown, M.T. url  doi
openurl 
  Title Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data Type Journal Article
  Year 2019 Publication Ecological Modelling Abbreviated Journal Ecological Modelling  
  Volume 397 Issue Pages 1-15  
  Keywords Remote Sensing  
  Abstract Emergy analysis is one of the ecological thermodynamics methods. With a specific set of indicators, it is proved to be highly informative for sustainability assessment of national/regional economies. However, a large amount of data needed for its calculation are from official statistical data by administrative divisions. The spatialization of emergy in early researches were limited to the administrative boundaries. The emergy inside an administrative boundary renders a single value, which hides plenty of information for more precise regional planning.

This study develops a new methodology for mapping the spatial distribution of emergy density of a region. The renewable resource distribution can be mapped based on latest geospatial datasets and GIS technology, instead of solely relying on statistics and yearbooks data. Besides, a new spatialization method of non-renewable emergy based on DMSP-OLS nighttime lights data is proposed. Combined with the radiation calibration data, the problem of light saturation of DMSP-OLS nighttime lights data was solved to improve the emergy spatial detail of city centers. With a case study of Jing-Jin-Ji region, results showed that this method could generate a high-resolution map of emergy use, and depict human disturbance to the environment in a more precise manner. This may provide supportive information for more precise land use planning, strategic layout and policy regulation, and is helpful for regional sustainable development.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3800 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2192  
Permanent link to this record
 

 
Author (down) Wang, X.; Cheng, H. url  doi
openurl 
  Title Study on the Temporal and Spatial Pattern Differences of Chinese Light Curl Based on DMSP/OLS Type Journal Article
  Year 2019 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.  
  Volume 310 Issue Pages 032072  
  Keywords Remote Sensing  
  Abstract Nighttime light data can detect surface gleams that can intuitively reflect human socioeconomic activity.This paper uses the DMSP/OLS nighttime lighting data from 2001 to 2007 to analyze the coupling relationship between regional economic development and nighttime light intensity in China using regression model.The results show that the brightest areas of nighttime light are mainly concentrated in the Beijing-Tianjin-Hebei region, the Yangtze River Delta region, and the Pearl River Delta region. With the change of theyear, the brightness of the three regions is brighter year by year, indicating that the economy is more and more developed.The linear regression model of total brightness and GDP of regional light: Y=792.218+0.024X, linear slope is 0.024, indicating a positive correlation trend.The provinces and cities with the highest total brightness of the provinces and cities are Guangdong Province, Shandong Province, and Jiangsu Province, and the lowest provinces and cities are Qinghai Province and Tibet Autonomous Region.The total brightness of regional lights in China's provinces and cities is well coupled with GDP. The total brightness of regional lights in all provinces and cities is weakened from east to west. The brightness of the 11 provinces in the eastern region is the strongest, including Beijing, Tianjin, Hebei, Liaoning, Shanghai, and Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan Province.The second most powerful lighting is the eight provinces in the central region including Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan.The weakest lighting is in the western regions of Sichuan, Chongqing, Guizhou, Yunnan, Tibet, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi, Inner Mongolia and other provinces (cities).In the east of the Hu Huanyong line, the nighttime lighting is higher than the west of the Hu Huanyong line.The eastern part of China's seven geographical divisions (Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Shandong, Fujian, and Taiwan) has the brightest night lights.The northwestern region (Shaanxi, Gansu, Qinghai, Ningxia Hui Autonomous Region, Xinjiang Uygur Autonomous Region, and Inner Mongolia Autonomous Region) has a weak night light.The brightness information of nighttime remote sensing data selected in this study can reflect the level of regional economic development.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-1315 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2670  
Permanent link to this record
 

 
Author (down) Wang, W., & Cao, C. url  doi
openurl 
  Title NOAA-20 VIIRS DNB Aggregation Mode Change: Prelaunch Efforts and On-Orbit Verification/Validation Results Type Journal Article
  Year 2019 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal  
  Volume 12 Issue 7 Pages  
  Keywords Remote Sensing; Radiometry; Earth; Satellite broadcasting; US Government agencies; Geology; Detectors; VIIRS-DNB  
  Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the National Oceanic and Atmospheric Administration-20 (NOAA-20, previously named Joint Polar Satellite System-1 or J1) satellite was successfully launched in late 2017, following six years of a successful operation by its predecessor on the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. NOAA-20 VIIRS day/night band (DNB) adopts a new on-board aggregation option (Op21), which is different from S-NPP DNB (using Op32), to mitigate high non-linearity at high scan angles, observed in its radiometric response during prelaunch test. As a result, NOAA-20 VIIRS DNB has a larger scan angle at the end of scan (∼60.5°) and exhibits a unique feature, i.e., ∼600 km extended Earth view (EV) samples, compared to S-NPP DNB and other VIIRS bands. VIIRS geolocation (GEO) algorithm and geometric calibration parameters were analyzed in-depth and subsequently modified to accommodate the NOAA-20 VIIRS DNB aggregation mode change. The GEO code change was tested using S-NPP data; S-NPP DNB simulated J1 DNB radiance and limited J1 prelaunch test data. After the launch, it was further verified using NOAA-20 VIIRS on-orbit observations. Our results show that the prelaunch VIIRS GEO code change performs well. GEO validation results using nighttime point sources show that NOAA-20 DNB GEO errors are comparable to those for S-NPP DNB over the nominal EV range, with averaged nadir equivalent GEO errors less than 200 m after on-bit updates. Over the extended EV samples (scan angle > 56.06°), the averaged GEO errors are less than 500 m. Moreover, NOAA-20 VIIRS DNB radiometric calibration performance is comparable to S-NPP.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2350  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: