|   | 
Details
   web
Records
Author (down) Zhao, N.; Cao, G.; Zhang, W.; Samson, E.L.
Title Tweets or nighttime lights: Comparison for preeminence in estimating socioeconomic factors Type Journal Article
Year 2018 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing
Volume 146 Issue Pages 1-10
Keywords Remote Sensing
Abstract Nighttime lights (NTL) imagery is one of the most commonly used tools to quantitatively study socioeconomic systems over large areas. In this study we aim to use location-based social media big data to challenge the primacy of NTL imagery on estimating socioeconomic factors. Geo-tagged tweets posted in the contiguous United States in 2013 were retrieved to produce a tweet image with the same spatial resolution of the NTL imagery (i.e., 0.00833° × 0.00833°). Sum tweet (the total number of tweets) and sum light (summed DN value of the NTL image) of each state or county were obtained from the tweets and the NTL images, respectively, to estimate three important socioeconomic factors: personal income, electric power consumption, and fossil fuel carbon dioxide emissions. Results show that sum tweet is a better measure of personal income and electric power consumption while carbon dioxide emissions can be more accurately estimated by sum light. We further exploited that African-Americans adults are more likely than White seniors to post geotagged tweets in the US, yet did not find any significant correlations between proportions of the subpopulations and the estimation accuracy of the socioeconomic factors. Existence of saturated pixels and blooming effects and failure to remove gas flaring reduce quality of NTL imagery in estimating socioeconomic factors, however, such problems are nonexistent in the tweet images. This study reveals that the number of geo-tagged tweets has great potential to be deemed as a substitute of brightness of NTL to assess socioeconomic factors over large geographic areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0924-2716 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1994
Permanent link to this record
 

 
Author (down) Zhao, N., Zhang, W., Liu, Y., Samson, E. L., Chen, Y., & Cao, G.
Title Improving Nighttime Light Imagery With Location-Based Social Media Data Type Journal Article
Year 2018 Publication IEEE Transactions on Geoscience and Remote Sensing Abbreviated Journal
Volume 57 Issue 4 Pages
Keywords Remote Sensing
Abstract Location-based social media have been extensively utilized in the concept of “social sensing” to exploit dynamic information about human activities, yet joint uses of social sensing and remote sensing images are underdeveloped at present. In this paper, the close relationship between the number of Twitter users and brightness of nighttime lights (NTL) over the contiguous United States is calculated and geotagged tweets are then used to upsample a stable light image for 2013. An associated outcome of the upsampling process is the solution of two major problems existing in the NTL image, pixel saturation, and blooming effects. Compared with the original stable light image, digital number (DN) values of the upsampled stable light image have larger correlation coefficients with gridded population (0.47 versus 0.09) and DN values of the new generation NTL image product (0.56 versus 0.52), i.e., the Visible Infrared Imaging Radiometer Suite day/night band image composite. In addition, total personal incomes of states are disaggregated to each pixel in proportion to the DN value of the pixel in the NTL images and then aggregate by counties. Personal incomes distributed by the upsampled NTL image are closer to the official demographic data than those distributed by the original stable light image. All of these results explore the potential of geotagged tweets to improve the quality of NTL images for more accurately estimating or mapping socioeconomic factors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2353
Permanent link to this record
 

 
Author (down) Zhang, Z.; Wang, H.-J.; Wang, D.-R.; Qu, W.-M.; Huang, Z.-L.
Title Red light at intensities above 10 lx alters sleep-wake behavior in mice Type Journal Article
Year 2017 Publication Light, Science & Applications Abbreviated Journal Light Sci Appl
Volume 6 Issue 5 Pages e16231
Keywords Animals
Abstract Sleep is regulated by two mechanisms: the homeostatic process and the circadian clock. Light affects sleep and alertness by entraining the circadian clock, and acutely inducing sleep/alertness, in a manner mediated by intrinsically photosensitive retinal ganglion cells. Because intrinsically photosensitive retinal ganglion cells are believed to be minimally sensitive to red light, which is widely used for illumination to reduce the photic disturbance to nocturnal animals during the dark phase. However, the appropriate intensity of the red light is unknown. In the present study, we recorded electroencephalograms and electromyograms of freely moving mice to investigate the effects of red light emitted by light-emitting diodes at different intensities and for different durations on the sleep-wake behavior of mice. White light was used as a control. Unexpectedly, red light exerted potent sleep-inducing effects and changed the sleep architecture in terms of the duration and number of sleep episodes, the stage transition, and the EEG power density when the intensity was >20 lx. Subsequently, we lowered the light intensity and demonstrated that red light at or below 10 lx did not affect sleep-wake behavior. White light markedly induced sleep and disrupted sleep architecture even at an intensity as low as 10 lx. Our findings highlight the importance of limiting the intensity of red light (10 lx) to avoid optical influence in nocturnal behavioral experiments, particularly in the field of sleep and circadian research.
Address Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2047-7538 ISBN Medium
Area Expedition Conference
Notes PMID:30167247; PMCID:PMC6062196 Approved no
Call Number GFZ @ kyba @ Serial 2463
Permanent link to this record
 

 
Author (down) Zhang, X.; Yang, W.; Liang, W.; Wang, Y.; Zhang, S.
Title Intensity dependent disruptive effects of light at night on activation of the HPG axis of tree sparrows (Passer montanus) Type Journal Article
Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume in press Issue Pages
Keywords Animals
Abstract Artificial light at night (ALAN) has become increasingly recognized as a disruptor of the reproductive endocrine process and behavior of wild birds. However, there is no evidence that ALAN directly disrupt the hypothalamus-pituitary-gonadal (HPG) axis, and no information on the effects of different ALAN intensities on birds. We experimentally tested whether ALAN affects reproductive endocrine activation in the HPG axis of birds, and whether this effect is related to the intensity of ALAN, in wild tree sparrows (Passer montanus). Forty-eight adult female birds were randomly assigned to four groups. They were first exposed to a short light photoperiod (8 h light and 16 h dark per day) for 20 days, then exposed to a long light photoperiod (16 h light and 8 h dark per day) to initiate the reproductive endocrine process. During these two kinds of photoperiod treatments, the four groups of birds were exposed to 0, 85, 150, and 300 lux light in the dark phase (night) respectively. The expression of the reproductive endocrine activation related TSH-β, Dio2 and GnRH-I gene was significantly higher in birds exposed to 85 lux light at night, and significantly lower in birds exposed to 150 and 300 lux, relative to the 0 lux control. The birds exposed to 85 lux had higher peak values of plasma LH and estradiol concentration and reached the peak earlier than birds exposed to 0, 150, or 300 lux did. The lower gene expression of birds exposed to 150 and 300 lux reduced their peak LH and estradiol values, but did not delay the timing of these peaks compared to the control group. These results reveal that low intensity ALAN accelerates the activation of the reproductive endocrine process in the HPG axis, whereas high intensity ALAN retards it.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2281
Permanent link to this record
 

 
Author (down) Zhang, W.; Jiang, L.; Cui, Y.; Xu, Y.; Wang, C.; Yu, J.; Streets, D.G.; Lin, B.
Title Effects of urbanization on airport CO2 emissions: A geographically weighted approach using nighttime light data in China Type Journal Article
Year 2019 Publication Resources, Conservation and Recycling Abbreviated Journal Resources, Conservation and Recycling
Volume 150 Issue Pages 104454
Keywords Remote Sensing
Abstract Regional disparities in carbon dioxide (CO2) emissions from airports at the city level are of increasing importance for low-carbon development of the civil aviation sector. However, CO2 emissions from airport operations have rarely been estimated and discussed. We investigate the main driving forces of airport CO2 emissions by using Ordinary Least Square (OLS) and Geographically Weighted Regression (GWR) models, separately, to investigate whether urbanization drives airport CO2 emissions and to investigate spatial heterogeneity at the city level. Nighttime light (NTL) data from satellite observations are adopted as a proxy for urbanization. We obtained energy consumption data by end-use purpose for 70 airports in China and calculated the CO2 emissions from on-ground airport operations. The median CO2 emissions of the 70 sample airports are estimated to be 15.9 million tonnes for 2015. Results from the GWR model indicate that airport CO2 emissions are affected by five main factors: urbanization, foreign direct investment, the share of tertiary industry in gross domestic output, passenger turnover of civil aviation and passenger turnover of railways. The elasticity of urbanization shows an increasing trend from the east of China to the west. The spatial heterogeneity of the CO2 emissions of the five airport clusters that are located in five urban agglomerations is discussed. In order to achieve effective reductions of CO2 emissions from airports, policy-makers should consider the spatial heterogeneity of the major driving factors of carbon emissions in different regions to avoid carbon lock-in.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-3449 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2657
Permanent link to this record