|   | 
Details
   web
Records
Author (down) Zeale, M.R.K.; Stone, E.L.; Zeale, E.; Browne, W.J.; Harris, S.; Jones, G.
Title Experimentally manipulating light spectra reveals the importance of dark corridors for commuting bats Type Journal Article
Year 2018 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume in press Issue Pages in press
Keywords Animals
Abstract The rapid global spread of artificial light at night is causing unprecedented disruption to ecosystems. In otherwise dark environments, street lights restrict the use of major flight routes by some bats, including the threatened lesser horseshoe bat Rhinolophus hipposideros, and may disrupt foraging. Using radio tracking, we examined the response of individual female R. hipposideros to experimental street lights placed on hedgerows used as major flight routes. Hedgerows were illuminated on one side over four nights using lights with different emission spectra, while the opposite side of the hedge was not illuminated. Automated bat detectors were used to examine changes in overall bat activity by R. hipposideros and other bat species present. R. hipposideros activity reduced significantly under all light types, including red light, challenging a previously held assumption that red light is safe for bats. Despite this, R. hipposideros rapidly adapted to the presence of lights by switching their flight paths to the dark side of the hedgerow, enabling them to reach foraging sites without restriction. Red light had no effect on the activity of the other species present. Slow-flying Myotis spp. avoided orange, white and green light, while more agile Pipistrellus spp. were significantly more abundant at these light types compared to dark controls, most probably in response to accumulations of insect prey. No effect of any light type was found for Nyctalus or Eptesicus spp. Our findings demonstrate that caution must be used when promoting forms of lighting that are thought to be safe for wildlife before they are tested more widely. We argue that it is essential to preserve dark corridors free from light pollution to mitigate the impacts of artificial light at night on bat activity and movements. This article is protected by copyright. All rights reserved.
Address School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:30288876 Approved no
Call Number GFZ @ kyba @ Serial 2021
Permanent link to this record
 

 
Author (down) Zapata, M.J.; Sullivan, S.M.P.; Gray, S.M.
Title Artificial Lighting at Night in Estuaries—Implications from Individuals to Ecosystems Type Journal Article
Year 2018 Publication Estuaries and Coasts Abbreviated Journal
Volume In press Issue Pages
Keywords Animals; Ecology
Abstract Artificial lighting at night (ALAN) produced by urban, industrial, and roadway lighting, as well as other sources, has dramatically increased in recent decades, especially in coastal environments that support dense human populations. Artificial “lightscapes” are characterized by distinct spatial, temporal, and spectral patterns that can alter natural patterns of light and dark with consequences across levels of biological organization. At the individual level, ALAN can elicit a suite of physiological and behavioral responses associated with light-mediated processes such as diel activity patterns and predator-prey interactions. ALAN has also been shown to modify community composition and trophic structure, with implications for ecosystem-level processes including primary productivity, nutrient cycling, and the energetic linkages between aquatic and terrestrial systems. Here, we review the state of the science relative to the impacts of ALAN on estuaries, which is an important step in assessing the long-term sustainability of coastal regions. We first consider how multiple properties of ALAN (e.g., intensity and spectral content) influence the interaction between physiology and behavior of individual estuarine biota (drawing from studies on invertebrates, fishes, and birds). Second, we link individual- to community- and ecosystem-level responses, with a focus on the impacts of ALAN on food webs and implications for estuarine ecosystem functions. Coastal aquatic communities and ecosystems have been identified as a key priority for ALAN research, and a cohesive research framework will be critical for understanding and mitigating ecological consequences.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2116
Permanent link to this record
 

 
Author (down) Żagan, W.,; Skarżyński, K.
Title Analysis of light pollution from floodlighting: Is there a different approach to floodlighting? Type Journal Article
Year 2017 Publication Light and Engineering Abbreviated Journal
Volume 25 Issue 1 Pages 75-82
Keywords LED lighting
Abstract The research which was prepared for this paper was inspired by a real floodlit object. The main distinctive feature is connected with the directionality of its lighting. The „Sezam” building was one of the first to be illuminated in the opposite way to the usual manner of floodlighting. The analysis, based on the measurement of horizontal illuminance on the pavement in front of the building andof theluminance on the facade, leads to some very unusual conclusions. It goes deeper than merely the assessment of the phenomenon of light pollution in the context of floodlighting. Additionally, a short survey about the preferences of lighting directionality in floodlighting and the general concept of light pollution was conducted on a group of over a dozen people. It turned out that people are quite aware of the phenomenon of light pollution and they rather prefer illumination from floodlighting to be from bottom to top.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2450
Permanent link to this record
 

 
Author (down) Yun, Hee-Kyung; Choi, Tae-Bong; Kim, Bu-Kyung; Kim, Hoon 윤희경; 최태봉; 김부경; 김훈
Title Study on the Standard Guideline of Environmental Impact Assessment Focusing on Light Pollution 빛공해 분야의 환경영향평가 지침 표준화 연구 Type Journal Article
Year 2019 Publication Journal of Environmental Impact Assessment (환경영향평가) Abbreviated Journal
Volume 28 Issue 1 Pages 63-70
Keywords Planning
Abstract Artificial lighting is an essential part, but it causes light pollution due to unnecessary or excessive use of light. Light pollution has negative effects such as power waste, adverse health effects, destruction of the ecosystem. But currently, light pollution is managed only post-management. The purpose of this study is to standardize methods of environmental impact assessment focusing on light pollution to effectively manage and reduce the negative effect of areas that may cause light pollution in advance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Korean Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2632
Permanent link to this record
 

 
Author (down) Youngstedt, S.D.; Elliott, J.A.; Kripke, D.F.
Title Human Circadian Phase-Response Curves for Exercise Type Journal Article
Year 2019 Publication The Journal of Physiology Abbreviated Journal J Physiol
Volume in press Issue Pages
Keywords Human Health
Abstract KEY POINTS: Exercise elicits circadian phase-shifting effects, but additional information is needed. The phase-response curve describing the magnitude and direction of circadian rhythm phase shifts depending on the time of the zeigeber (time cue) stimulus is the most fundamental chronobiological tool for alleviating circadian misalignment and related morbidity. 51 older and 48 young adults followed a circadian rhythms measurement protocol for up to 5.5 days, and performed 1 h of moderate treadmill exercise for 3 consecutive days at one of 8 times of day/night. Temporal changes in the phase of 6-sulphatoxymelatonin (aMT6s) were measured from evening onset, cosine acrophase, morning offset, and duration of excretion, establishing significant PRCs for aMT6 onset and acrophase with large phase delays from 7-10 PM and large phase advances at both 7 AM and 1-4 PM. Along with known synergism with bright light, the above PRCs with a second phase advance region (afternoon) could support both practical and clinical applications. ABSTRACT: Although bright light is regarded as the primary circadian zeitgeber, its limitations support exploring alternative zeitgebers. Exercise elicits significant circadian phase-shifting effects, but fundamental information regarding these effects is needed. The primary aim of this study was to establish phase-response curves (PRC) documenting the size and direction of phase shifts in relation to the circadian time of exercise. Aerobically fit older (n = 51, 59-75 y) and young adults (n = 48, 18-30 y) followed a 90-min laboratory ultra-short sleep wake cycle (60 min wake/30 min sleep) for up to 5 (1/2) days. At the same clock time on three consecutive days, each participant performed 60 min of moderate treadmill exercise (65-75% of heart rate reserve) at one of 8 times of day/night. To describe PRCs, phase shifts were measured for the cosine-fitted acrophase of urinary 6-sulphatoxymelatonin (aMT6s), as well as for the evening rise, morning decline, and change in duration of aMT6s excretion. Significant PRCs were found for aMT6s acrophase, onset and duration, with peak phase advances corresponding to clock times of 7 AM and 1PM-4PM, delays from 7 PM-10 PM, and minimal shifts around 4 PM and 2 AM. There were no significant age or sex differences. The amplitudes of the aMT6s onset and acrophase PRCs are comparable to expectations for bright light of equal duration. The phase advance to afternoon exercise and the exercise-induced PRC for change in aMT6s duration are novel findings. The results support further research exploring additive phase shifting effects of bright light and exercise and health benefits. This article is protected by copyright. All rights reserved.
Address Department of Psychiatry, University of California, San Diego, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3751 ISBN Medium
Area Expedition Conference
Notes PMID:30784068 Approved no
Call Number GFZ @ kyba @ Serial 2230
Permanent link to this record