toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (down) Wuchterl, G.; Reithofer, M. url  openurl
  Title Licht über Wien VI Type Journal Article
  Year 2018 Publication Abbreviated Journal  
  Volume Issue Pages  
  Keywords Skyglow  
  Abstract Im Zentrum Wiens sättigt die Erhellung der Nacht, am Stadtrand sinken die jährlichen Zuwächse, wäh-rend im Abstand von 36 Kilometern (Großmugl) die Nächte um 10 % pro Jahr heller werden.Der Gesamtaufwand der Wiener Lichtglocke liegt 2018 bei 37 MW. Der Verlauf von 2011 bis 2018 zeigt ein deutliches Lichtmaximum um 2014 und 2015. Danach stellen wir einen allmählichen Rückgang fest.Der Verlauf der Lichtglocke und noch deutlicher jener der Einzelstationen zeigt signifikante Schwankun-gen von Jahr zu Jahr. Zur Aufklärung der Ursachen, die weder astronomisch noch meteorologisch sind, wur-den monatliche Analysen des Lichtmessnetzes mit Daten des Luftmessnetzes der Wiener MA 22 kombiniert. Die natürliche Variation über das Jahr wurde genutzt, um Zusammenhänge zwischen den Monatsmedianen von Luftfeuchtigkeit und Feinstaub mit jenen der Globalstrahlungsdaten zu suchen.Von 2016 bis 2018 korrelieren die Globalstrahlungswerte mit der relativen Luftfeuchtigkeit und den Feinstaubwerten (PM10 und PM2,5). Die engste Beziehung besteht auf der Kuffner-Sternwarte, wo eine Verdoppelung der Luftfeuchtigkeit statistisch von einer Verzehnfachung der Globalstrahlung begleitet wird. Die gefundenen Relationen sind über einen Faktor 100 in der Globalstrahlung äußerst robust und die Koeffizienten der Relationen sind an allen Stationen sehr homogen.Damit stehen gut bestimmte Zusammenhänge zwischen der Luftgüte und dem Zustand der klaren Atmo-sphäre zur Verfügung. Das wird es erlauben, Lichtmessnetze auf Standardatmosphären zu beziehen und damit eine wesentlich bessere Vergleichbarkeit der Daten zu unterschiedlichen Zeitpunkten herzustellen.- 130 Gigawattstunden Jahresaufwand für die Wiener Lichtglocke- 8 Jahre Vermessung der Lichtglocke zeigen Ansätze eines Rückgangs der Lichtflut- Mehr Feinstaub bewirkt überproportional mehr Lichtverschmutzung  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language German Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2718  
Permanent link to this record
 

 
Author (down) Wren, W.; Locke, S. url  doi
openurl 
  Title Upgraded Rig Lighting Improves Night Time Visibility While Reducing Stray Light and the Threat to Dark Skies in West Texas Type Conference Article
  Year 2015 Publication Society of Petroleum Engineers Abbreviated Journal Soc. Petrol. Engr.  
  Volume Issue Pages  
  Keywords Lighting; outdoor lighting; petroleum; oil and gas; lighting engineering  
  Abstract McDonald Observatory, part of the University of Texas at Austin, is a world-class astronomical-research facility representing hundreds of millions of dollars of public and private investment that is increasingly threatened by nighttime lighting from oil-and-gas-related activities in and around the Permian Basin. Established in the remote Davis Mountains of West Texas in 1932, the observatory is home to some of the world's largest telescopes and it has continued as a world-renowned research center. Dark night skies are crucial to its mission. Since 2010, however, the sky along the observatory's northern horizon, in the direction of the Permian Basin, has been steadily and rapidly brightening, due to new exploration for oil and gas. The pace has been accelerating: More than 2,000 applications were filed over the past year to drill in the region. In 2011, the State of Texas enacted a law that instructs the seven counties surrounding McDonald Observatory, an area covering some 28,000 square miles, to adopt outdoor lighting ordinances designed to preserve the dark night skies for ongoing astronomical research at the observatory. Most had already done so voluntarily, but additional effort is needed throughout the area to address fast-moving energy-exploration activities.

A joint project between McDonald Observatory and Pioneer Energy Services (PES) has demonstrated that many of the adverse effects of oilfield lighting can be mitigated, without jeopardizing safety, through proper shielding and aiming of light fixtures. Beginning July, 2013, PES granted the observatory access to a working rig, Pioneer Rig #29. Every time the rig moved to a new location, there was an opportunity to install shields, re-aim floodlights, and evaluate effectiveness.

This joint project demonstrated that, in many cases, nighttime visibility on the rig can be significantly improved. Many light fixtures, which had been sources of blinding glare due to of lack of shielding, poor placement, or poor aiming, were made better and safer, using optional glare shields that are offered by manufacturers for a variety of fixture models. Proper shielding and aiming of existing fixtures improves visibility and reduces wasted uplight. New lighting systems that take advantage of light-emitting-diode technology also promise better directionality, reduced fuel consumption, and darker skies overhead.

The oil-and-gas industry has been lighting its exploration and production activities in much same way for more than 100 years, with little to no consideration of environmental impacts. The opportunity exists to adopt new lighting practices and technologies that improve safety, reduce costs, and help preserve our vanishing night skies so that important ongoing scientific exploration can continue.
 
  Address  
  Corporate Author Thesis  
  Publisher Society of Petroleum Engineers Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes SPE E&P Health, Safety, Security and Environmental Conference-Americas held in Denver, Colorado, USA, 16–18 March 2015 Approved no  
  Call Number IDA @ john @ Serial 1993  
Permanent link to this record
 

 
Author (down) Woods, H. C., & Scott, H. url  doi
openurl 
  Title Merging the Biological and Cognitive Processes of Sleep and Screens Type Journal Article
  Year 2019 Publication Current Sleep Medicine Reports Abbreviated Journal  
  Volume 5 Issue 3 Pages 150-155  
  Keywords Human Health  
  Abstract Purpose of Review

Screens are a permanent feature of life today and we have reached an interesting juncture with different research agendas investigating the biological and cognitive aspects of screen use separately. This review argues that it is timely and indeed essential that we bring together these research areas to fully understand both positive and negative aspects of screen use.

Recent Findings

More recent work is starting to take a more cohesive approach to understanding how device use pre-bedtime can impact our sleep by including both light and content in their experimental protocols which is a welcome development leading to a more nuanced understanding of both biological and cognitive processes.

Summary

We call for an open and collaborative approach to gain momentum in this direction of acknowledging both biological and cognitive factors enabling us to understand the relative impacts of both whilst using screens with regard to both light and content.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2640  
Permanent link to this record
 

 
Author (down) Wood, J.M.; Isoardi, G.; Black, A.; Cowling, I. url  doi
openurl 
  Title Night-time driving visibility associated with LED streetlight dimming Type Journal Article
  Year 2018 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev  
  Volume 121 Issue Pages 295-300  
  Keywords Public Safety  
  Abstract New LED streetlighting designs and dimming are being introduced worldwide, however, while their cost savings are well established, their impact on driving performance has received little attention. This study investigated the effect of streetlight dimming on night-time driving performance. Participants included 14 licensed drivers (mean age 34.2 +/- 4.9 years, range 27-40 years) who drove an instrumented vehicle around a closed circuit at night. Six LED streetlights were positioned along a 250 m, straight section and their light output varied between laps (dimming levels of 25%, 50%, 75% and 100% of maximum output; L25, L50, L75 and L100 respectively; at 100% average road surface luminance of 1.14 cd/m(2)). Driving tasks involved recognition distances and reaction times to a low contrast, moving target and a pedestrian walking at the roadside. Participants drove at an average driving speed of 55 km/hr in the streetlight zone. Streetlight dimming significantly delayed driver reaction times to the moving target (F3,13.06 = 6.404; p = 0.007); with an average 0.4 s delay in reaction times under L25 compared to L100, (estimated reduction in recognition distances of 6 m). Pedestrian recognition distances were significantly shorter under dimmed streetlight levels (F3,12.75 = 8.27; p = 0.003); average pedestrian recognition distances were 15 m shorter under L25 compared to L100, and 11 m shorter under L50 compared to L100. These data suggest that streetlight dimming impacts on driver visibility but it is unclear how these differences impact on safety; future studies are required to inform decisions on safe dimming levels for road networks.  
  Address School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0001-4575 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30317014 Approved no  
  Call Number GFZ @ kyba @ Serial 2160  
Permanent link to this record
 

 
Author (down) Wojnicki, I., Komnata, K., & Kotulski, L. url  openurl
  Title Comparative Study of Road Lighting Efficiency in the Context of CEN/TR 13201 2004 and 2014 Lighting Standards and Dynamic Control Type Journal Article
  Year 2019 Publication Energies Abbreviated Journal  
  Volume 12 Issue 8 Pages 1-14  
  Keywords Economics; Energy; Lighting; Planning  
  Abstract This paper presents a comparative study of differences in energy consumption while applying 2004 and 2014 releases of the CEN/TR 13201 standard for lighting designs. Street lighting optimal design and its optimization is discussed. To provide a reliable comparison, optimal designs for a given representative set of streets were calculated. The optimization was performed by newly developed software. As a test bed, a set of streets was selected with varying physical and traffic characteristics. The energy consumption was measured on the same set of streets both statically, which assumed the same lighting levels throughout night, and with a dynamic control, which adjusted lighting based on traffic intensity. For experiments with the dynamic control, one year of traffic intensity data were used. The findings confirm increased economical impact of dynamic control for the 2014 standard, which results in significant energy saving.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2348  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: