|   | 
Details
   web
Records
Author (up) Chen, M.; Zhang, S.
Title Measuring the regional non-observed economy in China with nighttime lights Type Journal Article
Year 2020 Publication International Journal of Emerging Markets Abbreviated Journal Ijoem
Volume in press Issue Pages
Keywords Remote Sensing
Abstract Purpose

The non-observed economy (NOE) is a pervasive phenomenon worldwide, especially in developing countries, but the size of the NOE and its contributions to the overall economy are usually unknown. This paper presents an estimation of the average size of the NOE for the 31 provincial regions in China between 1992 and 2013.

Design/methodology/approach

This study uses the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data combined with 11 existing surveys on or measurements of NOE for 191 countries or regions throughout the world, to measure the size of the NOE.

Findings

The results show that the NOE share is unevenly distributed among China's provincial regions, with the smallest being 3.19% for Beijing and the largest being 69.71% for Ningxia. The national average is 43.11%, while the figures for the eastern region, middle region, northeastern region and western region are 39.3%, 47.6%, 44.7% and 43.6%, respectively. The NOE estimates are negatively correlated with the measured gross domestic product (GDP) and GDP per capita, which suggests that developed regions tend to have less NOE.

Originality/value

The nighttime lights are used to measure the NOE for China's provincial regions. Compared with traditional databases, one of the prominent features of nighttime lights is its objectivity, as there is little human interference; therefore, it can be used to achieve more accurate results.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1746-8809 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2936
Permanent link to this record
 

 
Author (up) Chen, Q.; Ru, T.; Zhai, D.; Huang, X.; Li, Y.; Qian, L.; Wang, Y.; Zhou, G.
Title Half a century of Lighting Research & Technology: A bibliometric review Type Journal Article
Year 2019 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume in press Issue Pages 1477153519857788
Keywords History; Lighting; Review
Abstract Lighting Research & Technology (LRT) is an influential journal in the field of light and lighting dating back to 1969. To celebrate its 50th birthday, the current study explored its bibliometric characteristics and mapped the bibliographic information graphically through VOSviewer software. This analysis found that the number of papers has steadily increased during recent years. The most productive and cited country was the United Kingdom. The most productive and cited institution was Rensselaer Polytechnic Institute. The most prolific author was Steve Fotios and the most cited author was Mark Rea. The journal most cited together with LRT was Leukos. LRT has become more and more international and interdisciplinary over the last five decades. Suggestions for the development of LRT are provided. Develpoments over the last 50 years have turned LRT into one of leading journals in the light and lighting field, one which has a bright future.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2573
Permanent link to this record
 

 
Author (up) Chen, S.; Li, W.; Yang, S.; Zhang, B.; Li, T.; Du, Y.; Yang, M.; Zhao, H.
Title Evaluation method and reduction measures for the flicker effect in road lighting using fixed Low Mounting Height Luminaires Type Journal Article
Year 2019 Publication Tunnelling and Underground Space Technology Abbreviated Journal Tunnelling and Underground Space Technology
Volume 93 Issue Pages 103101
Keywords Lighting; Vision
Abstract Low Mounting Height Luminaires (LMHL) are used in many cities on viaducts, cross-sea and cross-river bridges due to their unique advantages. However, the flicker effect is an important factor that needs to be considered in road lighting using fixed LMHL. At present, there are not many researchers in the field of international lighting. Previous types of road lighting design were based on the method of the tunnel lighting flicker effect. At the same time, the flicker effect is mainly based on the subjective feelings of people but is not quantified. In this paper, the Flicker Index (FI) is calculated by measuring the parameters of streetlamps to evaluation flicker effect. Secondly, the suggestion to offset the flicker effect in CIE 88-2004 “Guide for the Lighting of Road Tunnels and Underpasses” is to limit the speed of the vehicle and adjust the road light spacing to avoid the flicker sensitive area on human eyes, while ignoring the essential problem of how the flicker effect is generated through the energy level of the stimulating optical signal. Two factors affecting the strength of the flicker effect are proposed: energy ratio and duty cycle. The duty cycle, in time, refers to the proportion of the strong and weak flashing signals during the period; in space, it refers to the proportional relationship between the length of the luminaire and the distance between the lamps, which is related to the running speed of the vehicle. It is consistent with the CIE recommendations for flicker. Thirdly, the essence of the flicker effect is the problem of the energy level of the stimulus signal. This study investigated the reduction in the brightness of the light source, hence reducing the energy of the visual stimulation signal to the human eye in order to judge the degree of fatigue in human vision. The experimental results show that the degree of fatigue in human vision decreases when the brightness of the experimental light source decreases. Therefore, the key to changing the flicker effect of LMHL is to reduce the contrast between the surface brightness of the luminaire and the brightness of the spatial background.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0886-7798 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2663
Permanent link to this record
 

 
Author (up) Chen, Shanshan; Hu, Deyong
Title Parameterizing Anthropogenic Heat Flux with an Energy-Consumption Inventory and Multi-Source Remote Sensing Data Type Journal Article
Year 2017 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 9 Issue 11 Pages 1165
Keywords Remote Sensing
Abstract Anthropogenic heat (AH) generated by human activities is an important factor affecting the urban climate. Thus, refined AH parameterization of a large area can provide data support for regional meteorological research. In this study, we developed a refined anthropogenic heat flux (RAHF) parameterization scheme to estimate the gridded anthropogenic heat flux (AHF). Firstly, the annual total AH emissions and annual mean AHF of Beijing municipality in the year 2015 were estimated using a top-down, energy-consumption inventory method, which was derived based on socioeconomic statistics and energy consumption data. The heat released from industry, transportation, buildings (including both commercial and residential buildings), and human metabolism were taken into account. Then, the county-scale AHF estimation model was constructed based on multi-source remote sensing data, such as Suomi national polar-orbiting partnership (Suomi-NPP) visible infrared imaging radiometer suite (VIIRS) nighttime light (NTL) data and moderate resolution imaging spectroradiometer (MODIS) data. This model was applied to estimate the annual mean AHF of the counties in the Beijing–Tianjin–Hebei region. Finally, the gridded AHF data with 500-m resolution was obtained using a RAHF parameterization scheme. The results indicate that the annual total AH emissions of Beijing municipality in the year 2015 was approximately 1.704 × 1018 J. Of this, the buildings contribute about 34.5%, followed by transportation and industry with about 30.5% and 30.1%, respectively, and human metabolism with only about 4.9%. The annual mean AHF value of the Beijing–Tianjin–Hebei region is about 6.07 W·m−2, and the AHF in urban areas is about in the range of 20 W·m−2 and 130 W·m−2. The maximum AHF value is approximately 130.84 W·m−2, mostly in airports, railway stations, central business districts, and other densely-populated areas. The error analysis of the county-scale AHF results showed that the residual between the model estimation and energy consumption statistics is less than 1%. In addition, the spatial distribution of RAHF results is generally centered on urban area and gradually decreases towards suburbs. The spatial pattern of the RAHF results within urban areas corresponds well to the distribution of population density, building density, and the industrial district. The spatial heterogeneity of AHF within urban areas is well-reflected through the RAHF results. The RAHF results can be used in meteorological and environmental modeling for the Beijing–Tianjin–Hebei region. The results of this study also highlight the superiority of Suomi-NPP VIIRS NTL data for AHF estimation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2342
Permanent link to this record
 

 
Author (up) Chen, X.
Title Nighttime Lights and Population Migration: Revisiting Classic Demographic Perspectives with an Analysis of Recent European Data Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 1 Pages 169
Keywords Remote Sensing
Abstract This study examines whether the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime lights can be used to predict population migration in small areas in European Union (EU) countries. The analysis uses the most current data measured at the smallest administrative unit in 18 EU countries provided by the European Commission. The ordinary least squares regression model shows that, compared to population size and gross domestic product (GDP), lights data are another useful predictor. The predicting power of lights is similar to population but it is much stronger than GDP per capita. For most countries, regression models with lights can explain 50–90% of variances in small area migrations. The results also show that the annual VIIRS lights (2015–2016) are slightly better predictors for migration population than averaged monthly VIIRS lights (2014–2017), and their differences are more pronounced in high latitude countries. Further, analysis of quadratic models, models with interaction effects and spatial lag, shows the significant effect of lights on migration in the European region. The study concludes that VIIRS nighttime lights hold great potential for studying human migration flow, and further open the door for more widespread application of remote sensing information in studying dynamic demographic processes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2794
Permanent link to this record