toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Bedrosian, T.A.; Nelson, R.J. url  doi
openurl 
  Title Timing of light exposure affects mood and brain circuits Type Journal Article
  Year 2017 Publication Translational Psychiatry Abbreviated Journal Transl Psychiatry  
  Volume 7 Issue 1 Pages e1017  
  Keywords Review; Human Health  
  Abstract Temporal organization of physiology is critical for human health. In the past, humans experienced predictable periods of daily light and dark driven by the solar day, which allowed for entrainment of intrinsic circadian rhythms to the environmental light-dark cycles. Since the adoption of electric light, however, pervasive exposure to nighttime lighting has blurred the boundaries of day and night, making it more difficult to synchronize biological processes. Many systems are under circadian control, including sleep-wake behavior, hormone secretion, cellular function and gene expression. Circadian disruption by nighttime light perturbs those processes and is associated with increasing incidence of certain cancers, metabolic dysfunction and mood disorders. This review focuses on the role of artificial light at night in mood regulation, including mechanisms through which aberrant light exposure affects the brain. Converging evidence suggests that circadian disruption alters the function of brain regions involved in emotion and mood regulation. This occurs through direct neural input from the clock or indirect effects, including altered neuroplasticity, neurotransmission and clock gene expression. Recently, the aberrant light exposure has been recognized for its health effects. This review summarizes the evidence linking aberrant light exposure to mood.  
  Address Department of Neuroscience, Behavioral Neuroendocrinology Group, The Ohio State University Wexner Medical Center, Columbus, OH, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3188 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28140399; PMCID:PMC5299389 Approved no  
  Call Number GFZ @ kyba @ Serial 2446  
Permanent link to this record
 

 
Author (up) Beebe, W. openurl 
  Title Rediscovery of the Bermuda cahow Type Journal Article
  Year 1935 Publication Bulletin of the New York Zoological Society Abbreviated Journal  
  Volume 38 Issue Pages 187-190  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2556  
Permanent link to this record
 

 
Author (up) Behera, S.K.; Mohanta, R. url  doi
openurl 
  Title Total An Investigation into Light Pollution as a Limiting factor for shift of Mass nesting ground at Rushikulya rookery Ganjam Odishas Type Journal Article
  Year 2018 Publication American Journal of Marine Research and Reviews Abbreviated Journal  
  Volume 1 Issue 6 Pages  
  Keywords Animals  
  Abstract Illumination due to artificial lights on nesting beaches and from nearby place to nesting beaches is detrimental to sea turtles because it alters critical nocturnal behaviors specifically, their choice of nesting sites and their return path to the sea after nesting. Illuminations perplex the hatchlings to find sea after emerging. Numerous studies conducted in other countries have demonstrated that artificial lights negatively impact on turtles, both female adults as they come to and go from their home beach to lay eggs, and to turtle hatchlings as they seek out the way to the open ocean. In this study we correlated the mass nesting intensity of 5years (2012 to 2018) at Rushikulya mass nesting site to the illumination zone. Illumination due to light conditions on nesting beaches are complex, and measuring light pollution in a way that effectively captures the impacts to sea turtles is difficult. But increase in intensity of illumination on selective mass nesting beaches showed gradual reduction in intensity of preferred nesting site during the mass nesting event. A gradual shift of nesting preference was also observed more toward darker zone.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number NC @ ehyde3 @ Serial 2104  
Permanent link to this record
 

 
Author (up) Benedetto, M.M.; Contin, M.A. url  doi
openurl 
  Title Oxidative Stress in Retinal Degeneration Promoted by Constant LED Light Type Journal Article
  Year 2019 Publication Frontiers in Cellular Neuroscience Abbreviated Journal Front. Cell. Neurosci.  
  Volume 13 Issue Pages  
  Keywords Vision; Human Health  
  Abstract Light pollution by artificial light, might accelerate retinal diseases and circadian asynchrony. The excess of light exposure is a growing problem in societies, so studies on the consequences of long-term exposure to low levels of light are needed to determine the effects on vision. The possibility to understand the molecular mechanisms of light damage will contribute to the knowledge about visual disorders related to defects in the phototransduction. Several animal models have been used to study retinal degeneration (RD) by light; however, some important aspects remain to be established. Previously, we demonstrated that cool white treatment of 200 lux light-emitting diode (LED) induces retinal transformation with rods and cones cell death and significant changes in opsin expression in the inner nuclear layer (INL) and ganglion cell layer (GCL). Therefore, to further develop describing the molecular pathways of RD, we have examined here the oxidative stress and the fatty acid composition in rat retinas maintained at constant light. We demonstrated the existence of oxidative reactions after 5 days in outer nuclear layer (ONL), corresponding to classical photoreceptors; catalase (CAT) enzyme activity did not show significant differences in all times studied and the fatty acid study showed that docosahexaenoic acid decreased after 4 days. Remarkably, the docosahexaenoic acid diminution showed a correlation with the rise in stearic acid indicating a possible association between them. We assumed that the reduction in docosahexaenoic acid may be affected by the oxidative stress in photoreceptors outer segment which in turn affects the stearic acid composition with consequences in the membrane properties. All these miss-regulation affects the photoreceptor survival through unknown mechanisms involved. We consider that oxidative stress might be one of the pathways implicated in RD promoted by light.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1662-5102 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2333  
Permanent link to this record
 

 
Author (up) Bennett, M.G. url  openurl
  Title The visual range of lights at night, and its relation to the visual range of ordinary objects by day. Type Journal Article
  Year 1932 Publication Quarterly Journal of the Royal Meteorological Society Abbreviated Journal QJ Roy. Met. Soc  
  Volume 58 Issue Pages 259-271  
  Keywords Vision; Skyglow  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2414  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: