|   | 
Details
   web
Records
Author Dananay, K.L.; Benard, M.F.
Title Artificial light at night decreases metamorphic duration and juvenile growth in a widespread amphibian Type Journal Article
Year 2018 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc. R. Soc. B
Volume 285 Issue 1882 Pages 20180367
Keywords Animals
Abstract Artificial light at night (ALAN) affects over 20% of the earth's surface and is estimated to increase 6% per year. Most studies of ALAN have focused on a single mechanism or life stage. We tested for indirect and direct ALAN effects that occurred by altering American toads' (Anaxyrus americanus) ecological interactions or by altering toad development and growth, respectively. We conducted an experiment over two life stages using outdoor mesocosms and indoor terraria. In the first phase, the presence of ALAN reduced metamorphic duration and periphyton biomass. The effects of ALAN appeared to be mediated through direct effects on toad development, and we found no evidence for indirect effects of ALAN acting through altered ecological interactions or colonization. In the second phase, post-metamorphic toad growth was reduced by 15% in the ALAN treatment. Juvenile-stage ALAN also affected toad activity: in natural light, toads retreated into leaf litter at night whereas ALAN toads did not change behaviour. Carry-over effects of ALAN were also present; juvenile toads that had been exposed to larval ALAN exhibited marginally increased activity. In this time frame and system, our experiments suggested ALAN's effects act primarily through direct effects, rather than indirect effects, and can persist across life stages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 1951
Permanent link to this record
 

 
Author Jiang, W.; He, G.; Leng, W.; Long, T.; Wang, G.; Liu, H.; Peng, Y.; Yin, R.; Guo, H.
Title Characterizing Light Pollution Trends across Protected Areas in China Using Nighttime Light Remote Sensing Data Type Journal Article
Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 7 Issue 7 Pages 243
Keywords Remote Sensing
Abstract Protected areas (PAs) with natural, ecological, and cultural value play important roles related to biological processes, biodiversity, and ecosystem services. Over the past four decades, the spatial range and intensity of light pollution in China has experienced an unprecedented increase. Few studies have been documented on the light pollution across PAs in China, especially in regions that provide a greater amount of important biodiversity conservation. Here, nighttime light satellite images from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) were selected to characterize light pollution trends across PAs using nighttime light indexes and hot spot analysis, and then the light pollution changes in PAs were classified. Furthermore, the causes of light pollution changes in PAs were determined using high-resolution satellite images and statistical data. The results showed the following: (1) Approximately 57.30% of PAs had an increasing trend from 1992 to 2012, and these PAs were mainly located in the eastern region, the central region, and a small part of the western region of China. Hot spot analysis showed that the patterns of change for the total night light and night light mean had spatial agglomeration characteristics; (2) The PAs affected by light pollution changes were divided into eight classes, of which PAs with stable trends accounted for 41%, and PAs with high increasing trends accounted for 10%. PAs that had high increasing trends with low density accounted for the smallest amount, i.e., only 1%; (3) The factors influencing light pollution changes in PAs included the distance to urban areas, mineral exploitation, and tourism development and the migration of residents. Finally, based on the status of light pollution encroachment into PAs, strategies to control light pollution and enhance the sustainable development of PAs are recommended.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 1952
Permanent link to this record
 

 
Author de Jong, M.; Lamers, K.P.; Eugster, M.; Ouyang, J.Q.; Da Silva, A.; Mateman, A.C.; van Grunsven, R.H.A.; Visser, M.E.; Spoelstra, K.
Title Effects of experimental light at night on extra-pair paternity in a songbird Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume 329 Issue 8-9 Pages 441-448
Keywords animals
Abstract Light pollution is increasing worldwide and significantly affects animal behavior. In birds, these effects include advancement of morning activity and onset of dawn song, which may affect extra-pair paternity. Advanced dawn song of males may stimulate females to engage in extra-pair copulations, and the earlier activity onset may affect the males' mate guarding behavior. Earlier work showed an effect of light at night on extra-pair behavior, but this was in an area with other anthropogenic disturbances. Here, we present a two-year experimental study on effects of light at night on extra-pair paternity of great tits (Parus major). Previously dark natural areas were illuminated with white, red, and green LED lamps and compared to a dark control. In 2014, the proportion of extra-pair young in broods increased with distance to the red and white lamps (i.e., at lower light intensities), but decreased with distance to the poles in the dark control. In 2013, we found no effects on the proportion of extra-pair young. The total number of offspring sired by a male was unaffected by artificial light at night in both years, suggesting that potential changes in female fidelity in pairs breeding close to white and red light did not translate into fitness benefits for the males of these pairs. Artificial light at night might disrupt the natural patterns of extra-pair paternity, possibly negates potential benefits of extra-pair copulations and thus could alter sexual selection processes in wild birds.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:29952126 Approved no
Call Number (up) GFZ @ kyba @ Serial 1953
Permanent link to this record
 

 
Author Fotios, S.; Yao, Q.
Title The association between correlated colour temperature and scotopic/photopic ratio Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume 35 Issue 10 Pages 1365-1374
Keywords Vision; Lighting
Abstract The scotopic/photopic ratio (S/P) is a parameter that may be considered in the design of road lighting. This paper compares the S/P ratio and correlated colour temperature (CCT) for 297 light source spectra identified in IES Technical Memorandum TM-30-15 to test the assumption that higher S/P ratios demand higher CCTs. The results suggest that, for a given lamp type, there is a strong association between S/P ratio and CCT, and hence that for a given CCT only a small variation in S/P ratio is available. However, the results also suggest that a larger variation in S/P ratio is possible if the lighting designer is able to consider a change in lamp type.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 1954
Permanent link to this record
 

 
Author Patel, J.S.; Radetsky, L.; Rea, M.S.
Title The Value of Red Light at Night for Increasing Basil Yield Type Journal Article
Year 2018 Publication Canadian Journal of Plant Science Abbreviated Journal Can. J. Plant Sci.
Volume 98 Issue 6 Pages 1321-1330
Keywords Plants
Abstract Sweet basil (<i>Ocimum basilicum L.</i>) is primarily used for culinary purposes, but it is also used in the fragrance and medicinal industries. In the last few years, global sweet basil production has been significantly impacted by downy mildew caused by <i>Peronospora belbahrii</i>. Nighttime exposure to red light has been shown to inhibit sporulation of <i>P. belbahrii</i>. The objective of this study was to determine if nighttime exposure to red light from light-emitting diodes (LEDs; λ<sub>max</sub> = 625 nm) could increase plant growth (plant height and leaf size) and yield (number and weight of leaves) in basil plants. In two sets of greenhouse experiments, red light was applied at a photosynthetic photon flux density (PPFD) of 60 µmol m<sup>-2</sup> s<sup>-1</sup> during the otherwise dark night for 10 hours (from 20:00 to 06:00). The results demonstrate that exposure to red light at night can increase the number of basil leaves per plant, plant height, leaf size (length and width), and leaf fresh and dry weight, compared to plants in darkness at night. The addition of incremental red light at night has the potential to be cost-effective for fresh organic basil production in controlled environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0008-4220 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) GFZ @ kyba @ Serial 1955
Permanent link to this record