|   | 
Details
   web
Records
Author Mard, J.; Di Baldassarre, G.; Mazzoleni, M.
Title Nighttime light data reveal how flood protection shapes human proximity to rivers Type Journal Article
Year 2018 Publication Science Advances Abbreviated Journal Sci Adv
Volume 4 Issue 8 Pages eaar5779
Keywords Remote Sensing
Abstract To understand the spatiotemporal changes of flood risk, we need to determine the way in which humans adapt and respond to flood events. One adaptation option consists of resettling away from flood-prone areas to prevent or reduce future losses. We use satellite nighttime light data to discern the relationship between long-term changes in human proximity to rivers and the occurrence of catastrophic flood events. Moreover, we explore how these relationships are influenced by different levels of structural flood protection. We found that societies with low protection levels tend to resettle further away from the river after damaging flood events. Conversely, societies with high protection levels show no significant changes in human proximity to rivers. Instead, such societies continue to rely heavily on structural measures, reinforcing flood protection and quickly resettling in flood-prone areas after a flooding event. Our work reveals interesting aspects of human adaptation to flood risk and offers key insights for comparing different risk reduction strategies. In addition, this study provides a framework that can be used to further investigate human response to floods, which is relevant as urbanization of floodplains continues and puts more people and economic assets at risk.
Address IHE Delft Institute for Water Education, 2611 AX Delft, Netherlands
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2375-2548 ISBN Medium
Area Expedition Conference
Notes PMID:30140738; PMCID:PMC6105301 Approved no
Call Number GFZ @ kyba @ Serial 1989
Permanent link to this record
 

 
Author Wilson IV, J.; Reid, K.J.; Braun, R.I.; Abbott, S.M.; Zee, P.C.
Title Habitual Light Exposure Relative to Circadian Timing in Delayed Sleep-Wake Phase Disorder Type Journal Article
Year 2018 Publication Sleep Abbreviated Journal
Volume in press Issue Pages
Keywords Human Health
Abstract Study Objectives

To compare melatonin timing, a well validated marker for endogenous circadian phase, and habitual light exposure patterns in adults with delayed sleep-wake phase disorder (DSWPD) and intermediate chronotype controls.

Methods

12 individuals with DSWPD (5 females, mean age 31.1) and 12 age matched controls (6 females, mean age 33.6) underwent a minimum of seven days of light and activity monitoring followed by an inpatient hospital stay, where blood was taken to assess melatonin timing (calculated as dim light melatonin onset – DLMO). Habitual light exposure patterns were then compared to a human phase response curve (PRC) to light.

Results

Relative to clock time, individuals with DSWPD had a later light exposure pattern compared to controls, but their light exposure pattern was earlier relative to DLMO. According to the human phase response curve (PRC) to light, individuals with DSWPD had less daily advancing light exposure compared to controls. The primary difference was seen in the late portion of the advancing window, in which individuals with DSWPD were exposed to fewer pulses of light of equivalent duration and intensity compared to controls.

Conclusions

Diminished advancing light exposure may play a role in the development and perpetuation of delayed sleep-wake timing in individuals with DSWPD. Enhancing light exposure during the later portion of the advancing window represents an innovative and complementary strategy that has the potential to improve the effectiveness of bright light therapy in DSWPD.
Address
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1990
Permanent link to this record
 

 
Author Suh, Y.-W.; Na, K.-H.; Ahn, S.-E.; Oh, J.
Title Effect of Ambient Light Exposure on Ocular Fatigue during Sleep Type Journal Article
Year 2018 Publication Journal of Korean Medical Science Abbreviated Journal J Korean Med Sci
Volume 33 Issue 38 Pages
Keywords Human Health
Abstract Background

To investigate the influence of nocturnal ambient light on visual function and ocular fatigue.

Methods

Sixty healthy subjects (30 males and 30 females) aged 19 through 29 years with no history of ocular disease were recruited. All subjects spent 3 consecutive nights in the sleep laboratory. During the first and second nights, the subjects were not exposed to light during sleep, but during the third night, they were exposed to ambient light, measuring 5 or 10 lux at the eye level, which was randomly allocated with 30 subjects each. The visual function and ocular fatigue were assessed at 7 a.m. on the 3rd and 4th mornings, using best-corrected visual acuity, refractive error, conjunctival hyperemia, tear break-up time, maximal blinking interval, ocular surface temperature, and subjective symptoms reported on a questionnaire.

Results

Three male and three female subjects failed to complete the study (4 in the 5 lux; 2 from the 10 lux). For the entire 54 subjects, tear break-up time and maximal blinking interval decreased (P = 0.015; 0.010, respectively), and nasal and temporal conjunctival hyperemia increased significantly after sleep under any ambient light (P < 0.001; 0.021, respectively). Eye tiredness and soreness also increased (P = 0.004; 0.024, respectively). After sleep under 5 lux light, only nasal conjunctival hyperemia increased significantly (P = 0.008). After sleep under 10 lux light, nasal and temporal conjunctival hyperemia, eye tiredness, soreness, difficulty in focusing, and ocular discomfort increased significantly (P < 0.05).

Conclusion

Nocturnal ambient light exposure increases ocular fatigue. Avoiding ambient light during sleep could be recommended to prevent ocular fatigue.
Address
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1011-8934 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1991
Permanent link to this record
 

 
Author Taylor, G.; Davies, W.J.
Title The Control Of Leaf Growth Of Betula And Acer By Photoenvironment Type Journal Article
Year 1985 Publication New Phytologist Abbreviated Journal New Phytol
Volume 101 Issue 2 Pages 259-268
Keywords Plants
Abstract Leaf extension of one‐year‐old seedlings of silver birch (Betula pendula Roth.) and sycamore (Acer pseudoplatanus L.), was measured using linear variable transducers (LVDTs) interfaced to a microcomputer. Birch and sycamore seedlings exhibited contrasting patterns of leaf extension during a diurnal cycle with a 16 h photoperiod. Birch leaves grew more rapidly when illuminated; growth during the photoperiod was approximately doubled when compared with growth in the dark. Mean relative growth rates ±SE at ‘lights‐on + 3 h’ and ‘lights‐off + 5 h’ were 0.0136 ± 0.0016 and 0.0066 ± 0.0005 h−1 respectively. In direct contrast, growth of sycamore leaves was increased when leaves were darkened; mean relative growth rates + SE at ‘lights‐on+3 h’ and ‘lights‐off + 5 h’ were 0.0056 ± 0.0005 and 0.0094 ± 0.0008 h‐1 respectively.

When leaves of birch and sycamore were darkened, increased leaf turgor was measured in both species, but only in sycamore was this higher night‐time turgor associated with a higher rate of leaf growth.

Cell wall extensibility (WEX), an indication of the ability of cell walls to loosen and extend irreversibly, and cell surface pH were assessed in darkened and illuminated leaves of both species. An increase in WEX was measured when birch leaves were illuminated (P≤ 0.001) and this was accompanied by a decline in cell surface pH (P≤ 0.001). However, when leaves of sycamore were illuminated, WEX declined (P≤ 005) and cell surface pH increased (P≤ 0.001).

The ability of these species to survive beneath a woodland canopy is discussed in relation to the cellular factors controlling their leaf growth.
Address
Corporate Author (up) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-646X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1992
Permanent link to this record
 

 
Author Wren, W.; Locke, S.
Title Upgraded Rig Lighting Improves Night Time Visibility While Reducing Stray Light and the Threat to Dark Skies in West Texas Type Conference Article
Year 2015 Publication Society of Petroleum Engineers Abbreviated Journal Soc. Petrol. Engr.
Volume Issue Pages
Keywords Lighting; outdoor lighting; petroleum; oil and gas; lighting engineering
Abstract McDonald Observatory, part of the University of Texas at Austin, is a world-class astronomical-research facility representing hundreds of millions of dollars of public and private investment that is increasingly threatened by nighttime lighting from oil-and-gas-related activities in and around the Permian Basin. Established in the remote Davis Mountains of West Texas in 1932, the observatory is home to some of the world's largest telescopes and it has continued as a world-renowned research center. Dark night skies are crucial to its mission. Since 2010, however, the sky along the observatory's northern horizon, in the direction of the Permian Basin, has been steadily and rapidly brightening, due to new exploration for oil and gas. The pace has been accelerating: More than 2,000 applications were filed over the past year to drill in the region. In 2011, the State of Texas enacted a law that instructs the seven counties surrounding McDonald Observatory, an area covering some 28,000 square miles, to adopt outdoor lighting ordinances designed to preserve the dark night skies for ongoing astronomical research at the observatory. Most had already done so voluntarily, but additional effort is needed throughout the area to address fast-moving energy-exploration activities.

A joint project between McDonald Observatory and Pioneer Energy Services (PES) has demonstrated that many of the adverse effects of oilfield lighting can be mitigated, without jeopardizing safety, through proper shielding and aiming of light fixtures. Beginning July, 2013, PES granted the observatory access to a working rig, Pioneer Rig #29. Every time the rig moved to a new location, there was an opportunity to install shields, re-aim floodlights, and evaluate effectiveness.

This joint project demonstrated that, in many cases, nighttime visibility on the rig can be significantly improved. Many light fixtures, which had been sources of blinding glare due to of lack of shielding, poor placement, or poor aiming, were made better and safer, using optional glare shields that are offered by manufacturers for a variety of fixture models. Proper shielding and aiming of existing fixtures improves visibility and reduces wasted uplight. New lighting systems that take advantage of light-emitting-diode technology also promise better directionality, reduced fuel consumption, and darker skies overhead.

The oil-and-gas industry has been lighting its exploration and production activities in much same way for more than 100 years, with little to no consideration of environmental impacts. The opportunity exists to adopt new lighting practices and technologies that improve safety, reduce costs, and help preserve our vanishing night skies so that important ongoing scientific exploration can continue.
Address
Corporate Author (up) Thesis
Publisher Society of Petroleum Engineers Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SPE E&P Health, Safety, Security and Environmental Conference-Americas held in Denver, Colorado, USA, 16–18 March 2015 Approved no
Call Number IDA @ john @ Serial 1993
Permanent link to this record