toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. url  doi
openurl 
  Title Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 233 Issue Pages (down) 111357  
  Keywords Remote Sensing; Instrumentation  
  Abstract The released VIIRS DNB nightly images, also known as VIIRS DNB daily nighttime images, provide rich information for time series analysis of global socioeconomic dynamics. Anisotropic characteristic is a possible factor that influences the VIIRS DNB radiance at night and its time series analysis. This study aims to investigate the relationship between viewing angles and VIIRS DNB radiance of Suomi NPP satellite in urban areas. First, twenty-nine points were selected globally to explore the angle variation of Suomi NPP satellite views at night. We found that the variation of the satellite viewing zenith angle (VZA) is consistent (e.g. between 0° and 70°) since the range of VZA is fixed depending on the sensor design, and the range of viewing azimuth angle (VAA) increases with the increase of latitude. Second, thirty points in cities of Beijing, Houston, Los Angeles, Moscow, Quito and Sydney, were used to investigate the angle-radiance relationship. We proposed a zenith-radiance quadratic (ZRQ) model and a zenith-azimuth-radiance binary quadratic (ZARBQ) model to quantify the relationship between satellite viewing angles and artificial light radiance, which has been corrected by removing the moonlight and atmospheric impact from VIIRS DNB radiance products. For all the thirty points, the ZRQ and ZARBQ analysis have averaged R2 of 0.50 and 0.53, respectively, which indicates that the viewing angles are important factors influencing the variation of the artificial light radiance, but extending zenith to zenith-azimuth does not much better explain the variation of the observed artificial light. Importantly, based on the data analysis, we can make the hypothesis that building height may affect the relationship between VZA and artificial light, and cold and hot spot effects are clearly found in tall building areas. These findings are potentially useful to reconstruct more stable time series VIIRS DNB images for socioeconomic applications by removing the angular effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2621  
Permanent link to this record
 

 
Author Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X.; Qiu, S.; Lv, Y. url  doi
openurl 
  Title Artificial light at night alter the impact of arsenic on microbial decomposers and leaf litter decomposition in streams Type Journal Article
  Year 2019 Publication Ecotoxicology and Environmental Safety Abbreviated Journal Ecotoxicol Environ Saf  
  Volume in press Issue Pages (down) 110014  
  Keywords Ecology; Microbes; Fungal communities and biodiversity; Illumina sequencing; Light pollution; Litter decomposition; Microbiological oxidation  
  Abstract Artificial light at night (ALAN, also known as light pollution) has been proved to be a contributor to environmental change and a biodiversity threat worldwide, yet little is known about its potential interaction with different metal pollutants, such as arsenic (As), one of the largest threats to aquatic ecosystems. To narrow this gap, an indoor microcosm study was performed using an ALAN simulation device to examine whether ALAN exposure altered the impact of arsenic on plant litter decomposition and its associated fungi. Results revealed that microbial decomposers involved in the conversion of As(III) to As(V), and ALAN exposure enhanced this effect; ALAN or arsenic only exposure altered fungal community composition and the correlations between fungi species, as well as stimulated or inhibited litter decomposition, respectively. The negative effects of arsenic on the decomposition of Pterocarya stenoptera leaf litter was alleviated by ALAN resulting in the enhanced photodegradation of leaf litter lignin and microbiological oxidation of As(III) to As(V), the increased microbial biomass and CBH activity, as well as the enhanced correlations between CBH and litter decomposition rate. Overall, results expand our understanding of ALAN on environment and highlight the contribution of ALAN to the toxicity of arsenic in aquatic ecosystems.  
  Address School of Pharmacy and Biological Sciences, Weifang Medical University, Weifang, 261053, China. Electronic address: njandgl@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0147-6513 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31810590 Approved no  
  Call Number GFZ @ kyba @ Serial 2777  
Permanent link to this record
 

 
Author Falchi, F.; Furgoni, R.; Gallaway, T.A.; Rybnikova, N.A.; Portnov, B.A.; Baugh, K.; Cinzano, P.; Elvidge, C.D. url  doi
openurl 
  Title Light pollution in USA and Europe: The good, the bad and the ugly Type Journal Article
  Year 2019 Publication Journal of Environmental Management Abbreviated Journal Journal of Environmental Management  
  Volume 248 Issue Pages (down) 109227  
  Keywords  
  Abstract Light pollution is a worldwide problem that has a range of adverse effects on human health and natural eco-systems. Using data from the New World Atlas of Artificial Night Sky Brightness, VIIRS-recorded radiance and Gross Domestic Product (GDP) data, we compared light pollution levels, and the light flux to the population size and GDP at the State and County levels in the USA and at Regional (NUTS2) and Province (NUTS3) levels inEurope. We found 6800-fold differences between the most and least polluted regions in Europe, 120-fold differences in their light flux per capita, and 267-fold differences influx per GDP unit. Yet, we found even greater differences between US counties: 200,000-fold differences in sky pollution, 16,000-fold differences in light flux per capita, and 40,000-fold differences in light flux per GDP unit. These findings may inform policy-makers, helping to reduce energy waste and adverse environmental, cultural and health consequences associated with light pollution.  
  Address STIL – Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Light Pollution Science and Technology Institute, Thiene, Italy; Italy. falchi@lightpollution.it(at)istil.it  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0301-4797 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2593  
Permanent link to this record
 

 
Author Xiao, Q.; Gee, G.; Jones, R.R.; Jia, P.; James, P.; Hale, L. url  doi
openurl 
  Title Cross-sectional association between outdoor artificial light at night and sleep duration in middle-to-older aged adults: The NIH-AARP Diet and Health Study Type Journal Article
  Year 2019 Publication Environmental Research Abbreviated Journal Environ Res  
  Volume 180 Issue Pages (down) 108823  
  Keywords Remote Sensing; Human Health; Artificial light at night; Circadian disruption; Neighborhood; Sleep; Socioeconomic disadvantage  
  Abstract INTRODUCTION: Artificial light at night (ALAN) can disrupt circadian rhythms and cause sleep disturbances. Several previous epidemiological studies have reported an association between higher levels of outdoor ALAN and shorter sleep duration. However, it remains unclear how this association may differ by individual- and neighborhood-level socioeconomic status, and whether ALAN may also be associated with longer sleep duration. METHODS: We assessed the cross-sectional relationship between outdoor ALAN and self-reported sleep duration in 333,365 middle- to older-aged men and women in the NIH-AARP Diet and Health Study. Study participants reported baseline addresses, which were geocoded and linked with outdoor ALAN exposure measured by satellite imagery data obtained from the U.S. Defense Meteorological Satellite Program's Operational Linescan System. We used multinomial logistic regression to estimate the multinomial odds ratio (MOR) and 95% confidence intervals (CI) for the likelihood of reporting very short (<5h), short (<7h) and long (>/=9h) sleep relative to reporting 7-8h of sleep across quintiles of LAN. We also conducted subgroup analyses by individual-level education and census tract-level poverty levels. RESULTS: We found that higher levels of ALAN were associated with both very short and short sleep. When compared to the lowest quintile, the highest quintile of ALAN was associated with 16% and 25% increases in the likelihood of reporting short sleep in women (MORQ1 vs Q5, (95% CI), 1.16 (1.10, 1.22)) and men (1.25 (1.19, 1.31)), respectively. Moreover, we found that higher ALAN was associated with a decrease in the likelihood of reporting long sleep in men (0.79 (0.71, 0.89)). We also found that the associations between ALAN and short sleep were larger in neighborhoods with higher levels of poverty. CONCLUSIONS: The burden of short sleep may be higher among residents in areas with higher levels of outdoor LAN, and this association is likely stronger in poorer neighborhoods. Future studies should investigate the potential benefits of reducing light intensity in high ALAN areas in improve sleep health.  
  Address Program in Public Health, Department of Family, Population, and Preventive Medicine, Stony Brook Medicine, Stony Brook, NY, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0013-9351 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31627155 Approved no  
  Call Number GFZ @ kyba @ Serial 2702  
Permanent link to this record
 

 
Author Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R. url  doi
openurl 
  Title The influence of artificial night at night and polarized light on bird-building collisions Type Journal Article
  Year 2020 Publication Biological Conservation Abbreviated Journal Biological Conservation  
  Volume 241 Issue Pages (down) 108358  
  Keywords Animals  
  Abstract Collisions with buildings annually kill up to 1 billion birds in the United States. Bird-building collisions primarily occur at glass surfaces: birds often fail to perceive glass as a barrier and appear to be attracted to artificial light emitted from windows. However, some aspects of avian vision are poorly understood, including how bird responses to different types of light influence building collisions. Some evidence suggests birds can detect polarized light, which may serve as a cue to assist with migration orientation and/or detect water bodies. Dark, reflective surfaces, including glass, reflect high degrees of polarized light, causing polarized light pollution (PLP). However, no studies have analyzed the relationship between bird collisions and PLP reflected from buildings. Additionally, while artificial light at night (ALAN) is frequently implicated as a major factor influencing bird-building collisions, few studies have analyzed this relationship. We investigated both types of light pollution—PLP and ALAN—and their association with bird collisions at 48 façades of 13 buildings in Minneapolis, Minnesota, USA. We found that the area of glass emitting ALAN was the most important factor influencing collisions, and that this effect of ALAN was independent of overall glass area; this result provides strong support for turning off lights at night to reduce bird-building collisions. Although we found no relationship between PLP and collisions, additional research is needed to better understand bird responses to polarized light. Fully understanding how different aspects of light influence bird-building collisions can inform conservation efforts to reduce this major threat to birds.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3207 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2757  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: