toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moaraf, S.; Vistoropsky, Y.; Pozner, T.; Heiblum, R.; Okuliarova, M.; Zeman, M.; Barnea, A. url  doi
openurl 
  Title Artificial light at night affects brain plasticity and melatonin in birds Type Journal Article
  Year 2019 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett  
  Volume in press Issue Pages (down) 134639  
  Keywords Animals; Artificial Light At Night (ALAN); cell proliferation; circadian cycle; melatonin; neuronal densities; zebra finches (Taeniopygia guttata)  
  Abstract Artificial light at night (ALAN), which disrupts the daily cycle of light, has vast biological impacts on all organisms, and is also associated with several health problems. The few existing studies on neuronal plasticity and cognitive functions in mammals indicate that a disruption of the circadian cycle impairs learning and memory and suppresses neurogenesis. However, nothing is known about the effect of ALAN on neuronal plasticity in birds. To this end, zebra finches (Taeniopygia guttata) were exposed to ecologically relevant ALAN intensities (0.5, 1.5 and 5 lux), treated with BrdU to quantify cell proliferation in their ventricular zone (VZ), and compared to controls that were kept under dark nights. We found, in our diurnal birds, that ALAN significantly increased cell proliferation in the VZ. However, neuronal densities in two brain regions decreased under ALAN, suggesting neuronal death. In addition, ALAN suppressed nocturnal melatonin production in a dose-dependent manner, and might also increase body mass. Taken together, our findings add to the notion of the deleterious effect of ALAN.  
  Address Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31760086 Approved no  
  Call Number GFZ @ kyba @ Serial 2760  
Permanent link to this record
 

 
Author Vanbergen, A.J.; Potts, S.G.; Vian, A.; Malkemper, E.P.; Young, J.; Tscheulin, T. url  doi
openurl 
  Title Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps Type Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume 695 Issue Pages (down) 133833  
  Keywords Animals; Ecology; review; anthropogenic radiofrequency electromagnetic radiation; AREMR; bees; Apis mellifera; pollinators  
  Abstract Worldwide urbanisation and use of mobile and wireless technologies (5G, Internet of Things) is leading to the proliferation of anthropogenic electromagnetic radiation (EMR) and campaigning voices continue to call for the risk to human health and wildlife to be recognised. Pollinators provide many benefits to nature and humankind, but face multiple anthropogenic threats. Here, we assess whether artificial light at night (ALAN) and anthropogenic radiofrequency electromagnetic radiation (AREMR), such as used in wireless technologies or emitted from power lines, represent an additional and growing threat to pollinators. A lack of high quality scientific studies means that knowledge of the risk to pollinators from anthropogenic EMR is either inconclusive, unresolved, or only partly established. A handful of studies provide evidence that ALAN can alter pollinator communities, pollination and fruit set. Laboratory experiments provide some, albeit variable, evidence that the honey bee Apis mellifera and other invertebrates can detect EMR, potentially using it for orientation or navigation, but they do not provide evidence that AREMR affects insect behaviour in ecosystems. Scientifically robust evidence of AREMR impacts on abundance or diversity of pollinators (or other invertebrates) are limited to a single study reporting positive and negative effects depending on the pollinator group and geographical location. Therefore, whether anthropogenic EMR (ALAN or AREMR) poses a significant threat to insect pollinators and the benefits they provide to ecosystems and humanity remains to be established.  
  Address Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; adam.vanbergen(at)inra.fr  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2613  
Permanent link to this record
 

 
Author Jawaad Atif, M.; Amin, B.; Imran Ghani, M.; Ali, M.; Liu, X.; Zhang, Y.; Cheng, Z. url  doi
openurl 
  Title Allium sativum L. (Garlic) bulb enlargement as influenced by differential combinations of photoperiod and temperature Type Journal Article
  Year 2020 Publication Food Chemistry Abbreviated Journal Food Chemistry  
  Volume in press Issue Pages (down) 127991  
  Keywords Plants  
  Abstract Photoperiod and temperature are vital environmental factors that regulate plant developmental processes. However, the roles of these factors in garlic bulb enlargement are unclear. In this report, responses of garlic bulb morphology and physiology to combinations of photoperiod (light/dark: 10/14 h, 12/12 h, 14/10 h) and temperature (light/dark: 25/18°C, 30/20°C) were investigated. For garlic cultivar G103, bulb characteristics, phytohormones (IAA, ABA, ZT, tZR, JA), allicin and phenolic acids (p-coumaric and p-hydroxybenzoic) were highest under a photoperiod of 14 h at 30°C. Maximum GA was observed under 14 h+30°C for cv. G2011-5. Maximum caffeic, ferulic and vanillic acids were detected for cv. G2011-5 at 14 h+30°C, 12 h+25°C and 14 h+25°C, respectively. Flavonoids (myricetin, quercetin, kaempferol and apigenin) were not detected in this trial. This is the first report describing the impact of long periods of light duration and higher temperatures on garlic morphology, phytohormones, phenolic acids and allicin content.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0308-8146 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3137  
Permanent link to this record
 

 
Author Wang, H.; Li, J.; Gao, M.; Chan, T.-C.; Gao, Z.; Zhang, M.; Li, Y.; Gu, Y.; Chen, A.; Yang, Y.; Ho, H.C. url  doi
openurl 
  Title Spatiotemporal variability in long-term population exposure to PM2.5 and lung cancer mortality attributable to PM2.5 across the Yangtze River Delta (YRD) region over 2010–2016: A multistage approach Type Journal Article
  Year 2020 Publication Chemosphere Abbreviated Journal Chemosphere  
  Volume in press Issue Pages (down) 127153  
  Keywords Remote Sensing  
  Abstract The Yangtze River Delta region (YRD) is one of the most densely populated regions in the world, and is frequently influenced by fine particulate matter (PM2.5). Specifically, lung cancer mortality has been recognized as a major health burden associated with PM2.5. Therefore, this study developed a multistage approach 1) to first create dasymetric population data with moderate resolution (1 km) by using a random forest algorithm, brightness reflectance of nighttime light (NTL) images, a digital elevation model (DEM), and a MODIS-derived normalized difference vegetation index (NDVI), and 2) to apply the improved population dataset with a MODIS-derived PM2.5 dataset to estimate the association between spatiotemporal variability of long-term population exposure to PM2.5 and lung cancer mortality attributable to PM2.5 across YRD during 2010–2016 for microscale planning. The created dasymetric population data derived from a coarse census unit (administrative unit) were fairly matched with census data at a fine spatial scale (street block), with R2 and RMSE of 0.64 and 27,874.5 persons, respectively. Furthermore, a significant urban-rural difference of population exposure was found. Additionally, population exposure in Shanghai was 2.9–8 times higher than the other major cities (7-year average: 192,000 μg·people/m3·km2). More importantly, the relative risks of lung cancer mortality in high-risk areas were 28%–33% higher than in low-risk areas. There were 12,574–14,504 total lung cancer deaths attributable to PM2.5, and lung cancer deaths in each square kilometer of urban areas were 7–13 times higher than for rural areas. These results indicate that moderate-resolution information can help us understand the spatiotemporal variability of population exposure and related health risk in a high-density environment.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0045-6535 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2938  
Permanent link to this record
 

 
Author Lin, P.; Yang, L.; Zhao, S. url  doi
openurl 
  Title Urbanization effects on Chinese mammal and amphibian richness: a multi-scale study using the urban-rural gradient approach Type Journal Article
  Year 2020 Publication Environmental Research Communications Abbreviated Journal Environ. Res. Commun.  
  Volume 2 Issue 12 Pages (down) 125002  
  Keywords Animals; Remote Sensing  
  Abstract The scale and extent of global urbanization are unprecedented and increasing. As urbanization generally encroaches on natural habitats and the urban ecological footprint reaches far beyond the city limits, how urbanization affects biodiversity has received increasing attention from the scientific community. Nonetheless, the comprehensive syntheses of urbanization consequences for biodiversity, including diverse taxonomic groups, across multiple spatial scales and spanning a wide gradient range of urbanization intensity are still insufficient. Here, based on the urban-rural gradient approach, we assessed the effects of urbanization on Chinese mammal and amphibian richness across the entire urbanization gradient (i.e., urbanization level from 0 to 1) at the national, regional and urban agglomeration scales. We used the global mammal and amphibian distribution data along with corresponding background climate, habitat conditions and socioeconomic activities data for analysis. Our results revealed a detailed and diverse pattern of Chinese mammal and amphibian richness along the entire spectrum of urbanization gradient across three spatial scales. And an approximately monotonic decrease only existed in certain urban agglomerations. The imprint of urbanization on mammal and amphibian richness were largely masked by the overall primacy of background climate at the national and regional scales. As the scale of analysis shifting from the country to urban agglomerations, urbanization-associated variables and locally specific limiting factors started to play important roles in driving the richness patterns. Moreover, the environmental Kuznets curve hypothesis can explain the relationship between biodiversity pressure and urbanization activities in certain Chinese urban agglomerations. However, the findings of urbanization effects on biodiversity using the urban-rural gradient analysis should be interpreted with caution because many possible driving forces simultaneously present along the urban-rural gradient and are very challenging to attribute.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2515-7620 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3252  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: