|   | 
Details
   web
Records
Author Rabaza, O.; Molero-Mesa, E.; Aznar-Dols, F.; Gómez-Lorente, D.
Title Experimental Study of the Levels of Street Lighting Using Aerial Imagery and Energy Efficiency Calculation Type Journal Article
Year 2018 Publication Sustainability Abbreviated Journal Sustainability
Volume 10 Issue 12 Pages (down) 4365
Keywords Remote Sensing; Lighting
Abstract This article describes an innovative method for measuring lighting levels and other lighting parameters through the use of aerial imagery of towns and cities. Combined with electricity consumption data from smart electricity meters, it was possible to measure the energy efficiency of public lighting installations. The results of this study also confirmed that lighting measurements, installation material, luminaire position, and electricity consumption data can be easily integrated into geographic information systems (GIS). The main advantage of this new methodology is that it provides information about lighting installations in large areas in less time than more conventional procedures. It is thus a more effective way of obtaining the data required to calculate the energy efficiency of lighting levels and electricity consumption. There is even the possibility of generating street lighting maps that provide local administrations with up-to-date information regarding the status of public lighting installations in their city. In this way, modifications or improvements can be made to achieve greater energy savings and, if necessary, to correct the distribution or configuration of public lighting systems to make them more efficient and sustainable. This research studied levels of street lighting and calculated the energy efficiency in various streets of Deifontes (Granada), through the use of aerial imagery.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2773
Permanent link to this record
 

 
Author Barducci, A.; Marcoionni, P.; Pippi, I.; Poggesi, M.
Title Effects of light pollution revealed during a nocturnal aerial survey by two hyperspectral imagers Type Journal Article
Year 2003 Publication Applied Optics Abbreviated Journal Appl. Opt.
Volume 42 Issue 21 Pages (down) 4349
Keywords Remote Sensing
Abstract A remote-sensing campaign was performed in September 2001 at nighttime under clear-sky conditions before moonrise to assess the level of light pollution of urban and industrial origin. Two hyperspectral sensors, namely, the Multispectral Infrared and Visible Imaging Spectrometer and the Visible Infrared Scanner-200, which provide spectral coverage from the visible to the thermal infrared, were flown over the Tuscany coast (Italy) on board a Casa 212 airplane. The acquired images were processed to produce radiometrically calibrated data, which were then analyzed and compared with ground-based spectral measurements. Calibrated data acquired at high spectral resolution (∼2.5 nm) showed a maximum scene brightness almost of the same order of magnitude as that observed during similar daytime measurements, whereas their average luminosity was 3 orders of magnitude lower. The measurement analysis confirmed that artificial illumination hinders astronomical observations and produces noticeable effects even at great distances from the sources of the illumination.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6935 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2438
Permanent link to this record
 

 
Author Mouland, J.W.; Martial, F.; Watson, A.; Lucas, R.J.; Brown, T.M.
Title Cones Support Alignment to an Inconsistent World by Suppressing Mouse Circadian Responses to the Blue Colors Associated with Twilight Type Journal Article
Year 2019 Publication Current Biology Abbreviated Journal Current Biology
Volume 29 Issue 24 Pages (down) 4260-4267.e4
Keywords Animals; Circadian Rhythm; mouse models; cones
Abstract In humans, short-wavelength light evokes larger circadian responses than longer wavelengths. This reflects the fact that melanopsin, a key contributor to circadian assessments of light intensity, most efficiently captures photons around 480 nm and gives rise to the popular view that ‘‘blue’’ light exerts the strongest effects on the clock. However, in the natural world, there is often no direct correlation be- tween perceived color (as reported by the cone-based visual system) and melanopsin excitation. Accordingly, although the mammalian clock does receive cone-based chromatic signals, the influence of color on circadian responses to light remains unclear. Here, we define the nature and functional significance of chromatic influences on the mouse circadian sys- tem. Using polychromatic lighting and mice with altered cone spectral sensitivity (Opn1mwR), we generate conditions that differ in color (i.e., ratio of L- to S-cone opsin activation) while providing identical melanopsin and rod activation. When biased toward S-opsin activation (appearing ‘‘blue’’), these stimuli reliably produce weaker circadian behavioral responses than those favoring L-opsin (‘‘yellow’’). This influence of color (which is absent in animals lacking cone phototransduction; Cnga3/) aligns with natural changes in spectral composition over twilight, where decreasing solar angle is accompanied by a strong blue shift. Accordingly, we find that naturalistic color changes support circadian alignment when environmental conditions render diurnal variations in light intensity weak/ambiguous sources of timing information. Our data thus establish how color contributes to circadian entrainment in mammals and provide important new insight to inform the design of lighting environments that benefit health.
Address Centre for Biological Timing, Faculty of Biology, Medicine & Health, University of Manchester, Oxford Road, Manchester M13 9PT, UK; timothy.brown(at)manchester.ac.uk
Corporate Author Thesis
Publisher Cell Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2785
Permanent link to this record
 

 
Author Ayalon, I.; de Barros Marangoni, L.F.; Benichou, J.I.C.; Avisar, D.; Levy, O.
Title Red Sea corals under Artificial Light Pollution at Night (ALAN) undergo oxidative stress and photosynthetic impairment Type Journal Article
Year 2019 Publication Global Change Biology Abbreviated Journal Glob Chang Biol
Volume 25 Issue 12 Pages (down) 4194-4207
Keywords Animals; *Anthozoa; Coral Reefs; Ecosystem; Indian Ocean; Oxidative Stress; Photosynthesis; Alan; Ros; corals; light pollution; photosynthesis; physiology
Abstract Coral reefs represent the most diverse marine ecosystem on the planet, yet they are undergoing an unprecedented decline due to a combination of increasing global and local stressors. Despite the wealth of research investigating these stressors, Artificial Light Pollution at Night (ALAN) or “ecological light pollution” represents an emerging threat that has received little attention in the context of coral reefs, despite the potential of disrupting the chronobiology, physiology, behavior, and other biological processes of coral reef organisms. Scleractinian corals, the framework builders of coral reefs, depend on lunar illumination cues to synchronize their biological rhythms such as behavior, reproduction and physiology. While, light pollution (POL) may mask and lead de-synchronization of these biological rhythms process. To reveal if ALAN impacts coral physiology, we have studied two coral species, Acropora eurystoma and Pocillopora damicornis, from the Gulf of Eilat/Aqaba, Red Sea, which is undergoing urban development that has led to severe POL at night. Our two experimental design data revealed that corals exposed to ALAN face an oxidative stress condition, show lower photosynthesis performances measured by electron transport rate (ETR), as well as changes in chlorophyll and algae density parameters. Testing different lights such as Blue LED and White LED spectrum showed more extreme impact in comparison to Yellow LEDs on coral physiology. The finding of this work sheds light on the emerging threat of POL and the impacts on the biology and ecology of Scleractinian corals, and will help to formulate specific management implementations to mitigate its potentially harmful impacts.
Address Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1354-1013 ISBN Medium
Area Expedition Conference
Notes PMID:31512309; PMCID:PMC6900201 Approved no
Call Number GFZ @ kyba @ Serial 2809
Permanent link to this record
 

 
Author Bará, S.
Title Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Type Journal Article
Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal
Volume 473 Issue 3 Pages (down) 4164-4173
Keywords Instrumentation; atmospheric effects; light pollution; numerical methods; photometry
Abstract A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.
Address 1Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es
Corporate Author Thesis
Publisher Oxford Academic Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0035-8711 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2164
Permanent link to this record