|   | 
Details
   web
Records
Author Voigt, C.C.; Rehnig, K.; Lindecke, O.; Petersons, G.
Title Migratory bats are attracted by red light but not by warm-white light: Implications for the protection of nocturnal migrants Type Journal Article
Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 8 Issue 18 Pages (down) 9353-9361
Keywords Animals
Abstract The replacement of conventional lighting with energy-saving light emitting diodes (LED) is a worldwide trend, yet its consequences for animals and ecosystems are poorly understood. Strictly nocturnal animals such as bats are particularly sensitive to artificial light at night (ALAN). Past studies have shown that bats, in general, respond to ALAN according to the emitted light color and that migratory bats, in particular, exhibit phototaxis in response to green light. As red and white light is frequently used in outdoor lighting, we asked how migratory bats respond to these wavelength spectra. At a major migration corridor, we recorded the presence of migrating bats based on ultrasonic recorders during 10-min light-on/light-off intervals to red or warm-white LED, interspersed with dark controls. When the red LED was switched on, we observed an increase in flight activity for Pipistrellus pygmaeus and a trend for a higher activity for Pipistrellus nathusii. As the higher flight activity of bats was not associated with increased feeding, we rule out the possibility that bats foraged at the red LED light. Instead, bats may have flown toward the red LED light source. When exposed to warm-white LED, general flight activity at the light source did not increase, yet we observed an increased foraging activity directly at the light source compared to the dark control. Our findings highlight a response of migratory bats toward LED light that was dependent on light color. The most parsimonious explanation for the response to red LED is phototaxis and for the response to warm-white LED foraging. Our findings call for caution in the application of red aviation lighting, particularly at wind turbines, as this light color might attract bats, leading eventually to an increased collision risk of migratory bats at wind turbines.
Address Faculty of Veterinary Medicine Latvia University of Life Sciences and Technologies Jelgava Latvia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes PMID:30377506; PMCID:PMC6194273 Approved no
Call Number NC @ ehyde3 @ Serial 2074
Permanent link to this record
 

 
Author Nitta, Y.; Matsui, S.; Kato, Y.; Kaga, Y.; Sugimoto, K.; Sugie, A.
Title Analysing the evolutional and functional differentiation of four types of Daphnia magna cryptochrome in Drosophila circadian clock Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages (down) 8857
Keywords Animals
Abstract Cryptochrome (CRY) plays an important role in the input of circadian clocks in various species, but gene copies in each species are evolutionarily divergent. Type I CRYs function as a photoreceptor molecule in the central clock, whereas type II CRYs directly regulate the transcriptional activity of clock proteins. Functions of other types of animal CRYs in the molecular clock remain unknown. The water flea Daphnia magna contains four Cry genes. However, it is still difficult to analyse these four genes. In this study, we took advantage of powerful genetic resources available from Drosophila to investigate evolutionary and functional differentiation of CRY proteins between the two species. We report differences in subcellular localisation of each D. magna CRY protein when expressed in the Drosophila clock neuron. Circadian rhythm behavioural experiments revealed that D. magna CRYs are not functionally conserved in the Drosophila molecular clock. These findings provide a new perspective on the evolutionary conservation of CRY, as functions of the four D. magna CRY proteins have diverse subcellular localisation levels. Furthermore, molecular clocks of D. magna have been evolutionarily differentiated from those of Drosophila. This study highlights the extensive functional diversity existing among species in their complement of Cry genes.
Address Brain Research Institute, Niigata University, Niigata, Japan. atsushi.sugie@bri.niigata-u.ac.jp
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31222139; PMCID:PMC6586792 Approved no
Call Number GFZ @ kyba @ Serial 2579
Permanent link to this record
 

 
Author Kehoe, R.C.; Cruse, D.; Sanders, D.; Gaston, K.J.; van Veen, F.J.F.
Title Shifting daylength regimes associated with range shifts alter aphid-parasitoid community dynamics Type Journal Article
Year 2018 Publication Ecology and Evolution Abbreviated Journal Ecol Evol
Volume 8 Issue 17 Pages (down) 8761-8769
Keywords Animals; Ecology
Abstract With climate change leading to poleward range expansion of species, populations are exposed to new daylength regimes along latitudinal gradients. Daylength is a major factor affecting insect life cycles and activity patterns, so a range shift leading to new daylength regimes is likely to affect population dynamics and species interactions; however, the impact of daylength in isolation on ecological communities has not been studied so far. Here, we tested for the direct and indirect effects of two different daylengths on the dynamics of experimental multitrophic insect communities. We compared the community dynamics under “southern” summer conditions of 14.5-hr daylight to “northern” summer conditions of 22-hr daylight. We show that food web dynamics indeed respond to daylength with one aphid species (Acyrthosiphon pisum) reaching much lower population sizes at the northern daylength regime compared to under southern conditions. In contrast, in the same communities, another aphid species (Megoura viciae) reached higher population densities under northern conditions. This effect at the aphid level was driven by an indirect effect of daylength causing a change in competitive interaction strengths, with the different aphid species being more competitive at different daylength regimes. Additionally, increasing daylength also increased growth rates in M. viciae making it more competitive under summer long days. As such, the shift in daylength affected aphid population sizes by both direct and indirect effects, propagating through species interactions. However, contrary to expectations, parasitoids were not affected by daylength. Our results demonstrate that range expansion of whole communities due to climate change can indeed change interaction strengths between species within ecological communities with consequences for community dynamics. This study provides the first evidence of daylength affecting community dynamics, which could not be predicted from studying single species separately.
Address College of Life and Environmental Sciences University of Exeter Penryn Cornwall UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-7758 ISBN Medium
Area Expedition Conference
Notes PMID:30271543; PMCID:PMC6157684 Approved no
Call Number NC @ ehyde3 @ Serial 2100
Permanent link to this record
 

 
Author Portugal, S. J., White, C. R., Frappell, P. B.m Green, J. A., & Butler, P. J.
Title Impacts of “supermoon” events on the physiology of a wild bird Type Journal Article
Year 2019 Publication Ecology and Evolution Abbreviated Journal
Volume 9 Issue Pages (down) 7974-7984
Keywords Animals; Moonlight
Abstract The position of the Moon in relation to the Earth and the Sun gives rise to several predictable cycles, and natural changes in nighttime light intensity are known to cause alterations to physiological processes and behaviors in many animals. The limited research undertaken to date on the physiological responses of animals to the lunar illumination has exclusively focused on the synodic lunar cycle (full moon to full moon, or moon phase) but the moon's orbit—its distance from the Earth—may also be relevant. Every month, the moon moves from apogee, its most distant point from Earth—and then to perigee, its closest point to Earth. Here, we studied wild barnacle geese (Branta leucopsis) to investigate the influence of multiple interacting lunar cycles on the physiology of diurnally active animals. Our study, which uses biologging technology to continually monitor body temperature and heart rate for an entire annual cycle, asks whether there is evidence for a physiological response to natural cycles in lunar brightness in wild birds, particularly “supermoon” phenomena, where perigee coincides with a full moon. There was a three‐way interaction between lunar phase, lunar distance, and cloud cover as predictors of nighttime mean body

temperature, such that body temperature was highest on clear nights when the full

moon coincided with perigee moon. Our study is the first to report the physiological responses of wild birds to “supermoon” events; the wild geese responded to the combination of two independent lunar cycles, by significantly increasing their body temperature at night. That wild birds respond to natural fluctuations in nighttime ambient light levels support the documented responses of many species to anthropogenic sources of artificial light, that birds seem unable to override. As most biological systems are arguably organized foremost by light, this suggests that any interactions between lunar cycles and local weather conditions could have significant impacts on the energy budgets of birds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2628
Permanent link to this record
 

 
Author Kocifaj, M.; Solano-Lamphar, H.A.; Videen, G.
Title Night-sky radiometry can revolutionize the characterization of light-pollution sources globally Type Journal Article
Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 116 Issue 16 Pages (down) 7712-7717
Keywords Skyglow
Abstract The city emission function (CEF), describing the angular emission from an entire city as a light source, is one of the key elements in night-sky radiance models. The CEF describes the rate at which skyglow depends on distance and is indispensable in any prediction of light-pollution propagation into nocturnal environments. Nevertheless, the CEF remains virtually unexplored because appropriate retrieval tools have been unavailable until very recently. A CEF has now been obtained from ground-based night-sky observations and establishes an experiment successfully conducted in the field to retrieve the angular emission function for an urban area. The field campaign was conducted near the city of Los Mochis, Mexico, which is well isolated from other cities and thus dominates all light emissions in its vicinity. The experiment has proven that radiometry of a night sky can provide information on the light output pattern of a distant city and allows for systematic, full-area, and cost-efficient CEF monitoring worldwide. A database of CEFs could initiate a completely new phase in light-pollution research, with significant economy and advanced accuracy of night-sky brightness predictions. The experiment and its interpretation represent unique progress in the field and contribute to our fundamental understanding of the mechanism by which direct and reflected uplight interact while forming the CEF.
Address Battlefield Environment Division, Army Research Laboratory, Adelphi, MD 20783
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes PMID:30936314; PMCID:PMC6475415 Approved no
Call Number GFZ @ kyba @ Serial 2330
Permanent link to this record