toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Zhang, Z.; Wang, H.-J.; Wang, D.-R.; Qu, W.-M.; Huang, Z.-L. url  doi
openurl 
  Title Red light at intensities above 10 lx alters sleep-wake behavior in mice Type Journal Article
  Year 2017 Publication Light, Science & Applications Abbreviated Journal Light Sci Appl  
  Volume 6 Issue 5 Pages (down) e16231  
  Keywords Animals  
  Abstract Sleep is regulated by two mechanisms: the homeostatic process and the circadian clock. Light affects sleep and alertness by entraining the circadian clock, and acutely inducing sleep/alertness, in a manner mediated by intrinsically photosensitive retinal ganglion cells. Because intrinsically photosensitive retinal ganglion cells are believed to be minimally sensitive to red light, which is widely used for illumination to reduce the photic disturbance to nocturnal animals during the dark phase. However, the appropriate intensity of the red light is unknown. In the present study, we recorded electroencephalograms and electromyograms of freely moving mice to investigate the effects of red light emitted by light-emitting diodes at different intensities and for different durations on the sleep-wake behavior of mice. White light was used as a control. Unexpectedly, red light exerted potent sleep-inducing effects and changed the sleep architecture in terms of the duration and number of sleep episodes, the stage transition, and the EEG power density when the intensity was >20 lx. Subsequently, we lowered the light intensity and demonstrated that red light at or below 10 lx did not affect sleep-wake behavior. White light markedly induced sleep and disrupted sleep architecture even at an intensity as low as 10 lx. Our findings highlight the importance of limiting the intensity of red light (10 lx) to avoid optical influence in nocturnal behavioral experiments, particularly in the field of sleep and circadian research.  
  Address Institutes of Brain Science and Collaborative Innovation Center for Brain Science, Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2047-7538 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30167247; PMCID:PMC6062196 Approved no  
  Call Number GFZ @ kyba @ Serial 2463  
Permanent link to this record
 

 
Author Te Kulve, M.; Schlangen, L.J.M.; van Marken Lichtenbelt, W.D. url  doi
openurl 
  Title Early evening light mitigates sleep compromising physiological and alerting responses to subsequent late evening light Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages (down) 16064  
  Keywords Human Health  
  Abstract The widespread use of electric light and electronic devices has resulted in an excessive exposure to light during the late-evening and at night. This late light exposure acutely suppresses melatonin and sleepiness and delays the circadian clock. Here we investigate whether the acute effects of late-evening light exposure on our physiology and sleepiness are reduced when this light exposure is preceded by early evening bright light. Twelve healthy young females were included in a randomised crossover study. All participants underwent three evening (18:30-00:30) sessions during which melatonin, subjective sleepiness, body temperature and skin blood flow were measured under different light conditions: (A) dim light, (B) dim light with a late-evening (22:30-23:30) light exposure of 750 lx, 4000 K, and (C) the same late-evening light exposure, but now preceded by early-evening bright light exposure (18.30-21.00; 1200 lx, 4000 K). Late-evening light exposure reduced melatonin levels and subjective sleepiness and resulted in larger skin temperature gradients as compared to dim. Interestingly, these effects were reduced when the late-evening light was preceded by an early evening 2.5-hour bright light exposure. Thus daytime and early-evening exposure to bright light can mitigate some of the sleep-disruptive consequences of light exposure in the later evening.  
  Address Department of Human Biology & Movement Sciences, NUTRIM, Maastricht University, Maastricht, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31690740; PMCID:PMC6831674 Approved no  
  Call Number GFZ @ kyba @ Serial 2751  
Permanent link to this record
 

 
Author Mishra, I.; Knerr, R.M.; Stewart, A.A.; Payette, W.I.; Richter, M.M.; Ashley, N.T. url  doi
openurl 
  Title Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata) Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages (down) 15833  
  Keywords Animals  
  Abstract Increased exposure to light pollution perturbs physiological processes through misalignment of daily rhythms at the cellular and tissue levels. Effects of artificial light-at-night (ALAN) on diel properties of immunity are currently unknown. We therefore tested the effects of ALAN on diel patterns of cytokine gene expression, as well as key hormones involved with the regulation of immunity, in zebra finches (Taeniopygia guttata). Circulating melatonin and corticosterone, and mRNA expression levels of pro- (IL-1beta, IL-6) and anti-inflammatory (IL-10) cytokines were measured at six time points across 24-h day in brain (nidopallium, hippocampus, and hypothalamus) and peripheral tissues (liver, spleen, and fat) of zebra finches exposed to 12 h light:12 h darkness (LD), dim light-at-night (DLAN) or constant bright light (LLbright). Melatonin and corticosterone concentrations were significantly rhythmic under LD, but not under LLbright and DLAN. Genes coding for cytokines showed tissue-specific diurnal rhythms under LD and were lost with exposure to LLbright, except IL-6 in hypothalamus and liver. In comparison to LLbright, effects of DLAN were less adverse with persistence of some diurnal rhythms, albeit with significant waveform alterations. These results underscore the circadian regulation of biosynthesis of immune effectors and imply the susceptibility of daily immune and endocrine patterns to ALAN.  
  Address Department of Biology, Western Kentucky University, Bowling Green, KY, USA. noah.ashley@wku.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31676761; PMCID:PMC6825233 Approved no  
  Call Number GFZ @ kyba @ Serial 2766  
Permanent link to this record
 

 
Author Xiang, S.; Dauchy, R.T.; Hoffman, A.E.; Pointer, D.; Frasch, T.; Blask, D.E.; Hill, S.M. url  doi
openurl 
  Title Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3-driven paclitaxel resistance in breast cancer Type Journal Article
  Year 2019 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res  
  Volume in press Issue Pages (down) e12586  
  Keywords Animals; Human Health  
  Abstract Disruption of circadian time structure and suppression of circadian nocturnal melatonin (MLT) production by exposure to dim light at night (dLAN), as occurs with night shift work and/or disturbed sleep-wake cycles, is associated with a significantly increased risk of breast cancer and resistance to tamoxifen and doxorubicin. Melatonin inhibition of human breast cancer chemo-resistance involves mechanisms including suppression of tumor metabolism and inhibition of kinases and transcription factors which are often activated in drug-resistant breast cancer. Signal Transducer and Activator of Transcription 3 (STAT3), frequently overexpressed and activated in Paclitaxel (PTX)-resistant breast cancer, promotes the expression of DNA methyltransferase one (DNMT1) to epigenetically suppresses the transcription of tumor suppressor Aplasia Ras homolog one (ARHI) which can sequester STAT3 in the cytoplasm to block PTX-resistance. We demonstrate that breast tumor xenografts in rats exposed to dLAN and circadian MLT disrupted express elevated levels of phosphorylated and acetylated STAT3, increased DNMT1, but reduced Sirtuin 1 (SIRT1) and ARHI. Furthermore, MLT and/or SIRT1 administration blocked/reversed Interleukin 6 (IL-6)-induced acetylation of STAT3 and its methylation of ARH1 to increase ARH1 mRNA expression in MCF-7 breast cancer cells. Finally, analyses of the I-SPY 1 trial demonstrates that elevated MT1 receptor expression is significantly correlated with pathologic complete response following neo-adjuvant therapy in breast cancer patients. This is the first study to demonstrate circadian disruption of MLT by dLAN driving intrinsic resistance to PTX via epigenetic mechanisms increasing STAT3 expression and that MLT administration can reestablish sensitivity of breast tumors to PTX and drive tumor regression. This article is protected by copyright. All rights reserved.  
  Address Tulane Circadian Cancer Biology Group, New Orleans, Louisiana  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-3098 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31077613 Approved no  
  Call Number GFZ @ kyba @ Serial 2383  
Permanent link to this record
 

 
Author Muztaba, R.; Saryantono, B.; Putri, A.N.I.; Pratiwi, T.D. url  doi
openurl 
  Title Zenithal sky glow measurement in Bandar Lampung as consideration in drafting the regulation of light pollution-free areas around the Lampung Astronomical Observatory (LAO) Type Journal Article
  Year 2019 Publication Journal of Physics: Conference Series Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1231 Issue Pages (down) 012023  
  Keywords Skyglow  
  Abstract Urban development to big cities generally will be accompanied by excessive use of artificial light, such as street lamps, billboards, and building lighting systems. Ineffective and incorrect lighting installation design causes environmental degradation, i.e light pollution. Today, light pollution is one indicator of environmental degradation and energy waste behavior. Study on light pollution has progressed in many fields of science, extending from traditional fields of astronomy to atmospheric physics, environmental science, natural science, and social life. Measurement of sky brightness is also an indicator of the feasibility of an observatory development plan. The location of the observatory is located at coordinates latitude -05° 27' 71'' and longitude 105° 09' 39'' with a height of 1030 above mean sea level. The construction of an observatory requires a study of the sky's brightness conditions as a matter of consideration to obtain the best observation result. Therefore, to support the Lampung Provincial Government, Institut Teknologi Sumatera (ITERA) and Institut Teknologi Bandung (ITB) in carrying out the construction of observatories in TAHURA WAR, Gunung Betung, Lampung. We did the sky brightness measurements as far as 15 km from the location point of the observatory. We use SQM to measure the brightness of the sky towards the zenith in every crowded area in the city of Bandar Lampung. Then, from the measurement results, we make a map of light pollution. From the mapping results, there are four locations that are indicated to be contaminated by light pollution, namely Tanjung Senang, Teluk Betung, Kemiling, and Gedong Tataan with respective values of 15.8 mpas, 16.6 mpas, 16.8 mpas, and 17.00 mpas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2569  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: