toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Yonezawa, T.; Uchida, M.; Tomioka, M.; Matsuki, N. url  doi
openurl 
  Title Lunar Cycle Influences Spontaneous Delivery in Cows Type Journal Article
  Year 2016 Publication PloS one Abbreviated Journal PLoS One  
  Volume 11 Issue 8 Pages (down) e0161735  
  Keywords Moonlight; Animals  
  Abstract There is a popular belief that the lunar cycle influences spontaneous delivery in both humans and cattle. To assess this relationship, we investigated the synodic distribution of spontaneous deliveries in domestic Holstein cows. We used retrospective data from 428 spontaneous, full-term deliveries within a three-year period derived from the calving records of a private farm in Hokkaido, Japan. Spontaneous birth frequency increased uniformly from the new moon to the full moon phase and decreased until the waning crescent phase. There was a statistically significant peak between the waxing gibbous and full moon phases compared with those between the last quarter and the waning crescent. These changes were clearly observed in deliveries among multiparous cows, whereas they were not evident in deliveries among nulliparous cows. These data suggest the utility of dairy cows as models for bio-meteorological studies, and indicate that monitoring lunar phases may facilitate comprehensive understanding of parturition.  
  Address Department of Veterinary Medical Sciences, The University of Tokyo, Tokyo, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27580019; PMCID:PMC5006988 Approved no  
  Call Number GFZ @ kyba @ Serial 2082  
Permanent link to this record
 

 
Author Helbich, M.; Browning, M.H.E.M.; Huss, A. url  doi
openurl 
  Title Outdoor light at night, air pollution and depressive symptoms: A cross-sectional study in the Netherlands Type Journal Article
  Year 2020 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume in press Issue Pages (down) 140914  
  Keywords Remote Sensing; Human Health  
  Abstract Background

Artificial light at night (ALAN) may be an anthropogenic stressor for mental health disturbing humans' natural day–night cycle. However, the few existing studies used satellite-based measures of radiances for outdoor ALAN exposure assessments, which were possibly confounded by traffic-related air pollutants.

Objective

To assess 1) whether living in areas with increased exposure to outdoor ALAN is associated with depressive symptoms; and 2) to assess the potential confounding effects of air pollution.

Methods

We used cross-sectional data from people (N = 10,482) aged 18–65 years in the Netherlands. Depressive symptoms were assessed with the Patient Health Questionnaire (PHQ–9). Satellite-measured annual ALAN were taken from the Visible Infrared Imaging Radiometer Suite. ALAN exposures were assessed at people's home address within 100 and 600 m buffers. We used generalized (geo)additive models to quantify associations between PHQ–9 scores and quintiles of ALAN adjusting for several potential confounders including PM2.5 and NO2.

Findings

Unadjusted estimates for the 100 m buffers showed that people in the 2nd to 5th ALAN quintile showed significantly higher PHQ–9 scores than those in the lowest ALAN quintile (βQ2 = 0.503 [95% confidence interval, 0.207–0.798], βQ3 = 0.587 [0.291–0.884], βQ4 = 0.921 [0.623–1.218], βQ5 = 1.322 [1.023–1.620]). ALAN risk estimates adjusted for individual and area-level confounders (i.e., PM2.5, urbanicity, noise, land-use diversity, greenness, deprivation, and social fragmentation) were attenuated but remained significant for the 100 m buffer (βQ2 = 0.420 [0.125–0.715], βQ3 = 0.383 [0.071–0.696], βQ4 = 0.513 [0.177–0.850], βQ5 = 0.541 [0.141–0.941]). When adjusting for NO2 per 100 m buffers, the air pollutant was associated with PHQ–9 scores, but ALAN did not display an exposure-response relationship. ALAN associations were insignificance for 600 m buffers.

Interpretation

Accounting for NO2 exposure suggested that air pollution rather than outdoor ALAN correlated with depressive symptoms. Future evaluations of health effects from ALAN should consider potential confounding by traffic-related exposures (i.e., NO2).
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3056  
Permanent link to this record
 

 
Author Ou, J.; Liu, X.; Li, X.; Li, M.; Li, W. url  doi
openurl 
  Title Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data Type Journal Article
  Year 2015 Publication PloS one Abbreviated Journal PLoS One  
  Volume 10 Issue 9 Pages (down) e0138310  
  Keywords Remote Sensing  
  Abstract Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.  
  Address School of Geography and Planning, and Guangdong Key Laboratory for Urbanization and Geo-simulation, Sun Yat-sen University, Guangzhou, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1932-6203 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26390037; PMCID:PMC4577086 Approved no  
  Call Number GFZ @ kyba @ Serial 2272  
Permanent link to this record
 

 
Author Zhang, F.-S.; Wang, Y.; Wu, K.; Xu, W.-Y.; Wu, J.; Liu, J.-Y.; Wang, X.-Y.; Shuai, L.-Y. url  doi
openurl 
  Title Effects of artificial light at night on foraging behavior and vigilance in a nocturnal rodent Type Journal Article
  Year 2020 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume In press Issue Pages (down) 138271  
  Keywords Animals  
  Abstract Artificial light at night has greatly changed the physical environment for many organisms on a global scale. As an energy efficient light resource, light emitting diodes (LEDs) have been widely used in recent years. As LEDs often have a broad spectrum, many biological processes may be potentially affected. In this study, we conducted manipulated experiments in rat-proof enclosures to explore the effects of LED night lighting on behavior of a nocturnal rodent, the Mongolian five-toed jerboa (Allactaga sibirica). We adopted the giving-up density (GUD) method and camera video trapping to study behavioral responses in terms of patch use, searching efficiency and vigilance. With the presence of white LED lighting, jerboas spent less time in patches, foraged less intensively (with higher GUDs) and became vigilant more frequently, while their searching efficiency was higher than under dark treatment. Although both positive and negative effects of LEDs on foraging were detected, the net effect of LEDs on jerboas is negative, which may further translate into changes in population dynamics, inter-specific interaction and community structure. This is the first study to explore the effects of LED lighting on foraging behavior and search efficiency in rodents with the potential positive effects of using artificial light regimes as a pest management tool.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2877  
Permanent link to this record
 

 
Author Kozaki, T.; Hidaka, Y.; Takakura, J.-Y.; Kusano, Y. url  doi
openurl 
  Title Salivary melatonin suppression under 100-Hz flickering blue light and non-flickering blue light conditions Type Journal Article
  Year 2020 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett  
  Volume 722 Issue Pages (down) 134857  
  Keywords Human Health; Flickering light; Intrinsically photosensitive retinal ganglion cell; Light; Light emitting diode; Melatonin  
  Abstract Bright light at night has been known to suppress melatonin secretion. Photoreceptors, known as intrinsically photosensitive retinal ganglion cells (ipRGCs), project dark/bright information into the superchiasmatic nucleus, which regulates the circadian system. Electroretinograms of ipRGCs show fluctuation that is synchronized with light ON-OFF stimulation. This finding suggests that the flickering condition of light may have an impact on our circadian system. In this study, we evaluate light-induced melatonin suppression under flickering and non-flickering light conditions. Fifteen male subjects between the ages of 20 and 23 years (mean +/- SD, 21.9 +/- 1.9) were exposed to three light conditions (dim, 100-Hz flickering and non-flickering light) from 1:00 a.m. to 2:30 a.m. Saliva samples were taken just before 1:00 and at 1:15, 1:30, 2:00, and 2:30 a.m. Repeated-measure t-test with Bonferroni correction showed a significant decrease in melatonin levels under both 100-Hz and non-flickering light conditions compared to dim light conditions after 2:00 a.m. Moreover, at 2:30 a.m., the rate of change in melatonin level under 100 Hz of flickering light was significantly lower than that under non-flickering light. Our present findings suggest that 100-Hz flickering light may suppress melatonin secretion more than non-flickering light.  
  Address Department of Health and Nutrition Sciences, Nishikyushu University, 4490-9 Osaki, Kanzaki, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32097701 Approved no  
  Call Number GFZ @ kyba @ Serial 2855  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: