|   | 
Details
   web
Records
Author Geronimo, R.; Franklin, E.; Brainard, R.; Elvidge, C.; Santos, M.; Venegas, R.; Mora, C.
Title Mapping Fishing Activities and Suitable Fishing Grounds Using Nighttime Satellite Images and Maximum Entropy Modelling Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 10 Pages 1604
Keywords Remote Sensing
Abstract Fisheries surveys over broad spatial areas are crucial in defining and delineating appropriate fisheries management areas. Yet accurate mapping and tracking of fishing activities remain largely restricted to developed countries with sufficient resources to use automated identification systems and vessel monitoring systems. For many countries, the spatial extent and boundaries of fishing grounds are not completely known. We used satellite images at night to detect fishing grounds in the Philippines for fishing gears that use powerful lights to attract coastal pelagic fishes. We used nightly boat detection data, extracted by U.S. NOAA from the Visible Infrared Imaging Radiometer Suite (VIIRS), for the Philippines from 2012 to 2016, covering 1713 nights, to examine spatio-temporal patterns of fishing activities in the country. Using density-based clustering, we identified 134 core fishing areas (CFAs) ranging in size from 6 to 23,215 km2 within the Philippines’ contiguous maritime zone. The CFAs had different seasonal patterns and range of intensities in total light output, possibly reflecting differences in multi-gear and multi-species signatures of fishing activities in each fishing ground. Using maximum entropy modeling, we identified bathymetry and chlorophyll as the main environmental predictors of spatial occurrence of these CFAs when analyzed together, highlighting the multi-gear nature of the CFAs. Applications of the model to specific CFAs identified different environmental drivers of fishing distribution, coinciding with known oceanographic associations for a CFA’s dominant target species. This case study highlights nighttime satellite images as a useful source of spatial fishing effort information for fisheries, especially in Southeast Asia.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2033
Permanent link to this record
 

 
Author Li, K.; Chen, Y.; Li, Y.
Title The Random Forest-Based Method of Fine-Resolution Population Spatialization by Using the International Space Station Nighttime Photography and Social Sensing Data Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 10 Pages 1650
Keywords Remote Sensing
Abstract Despite the importance of high-resolution population distribution in urban planning, disaster prevention and response, region economic development, and improvement of urban habitant environment, traditional urban investigations mainly focused on large-scale population spatialization by using coarse-resolution nighttime light (NTL) while few efforts were made to fine-resolution population mapping. To address problems of generating small-scale population distribution, this paper proposed a method based on the Random Forest Regression model to spatialize a 25 m population from the International Space Station (ISS) photography and urban function zones generated from social sensing data—point-of-interest (POI). There were three main steps, namely HSL (hue saturation lightness) transformation and saturation calibration of ISS, generating functional-zone maps based on point-of-interest, and spatializing population based on the Random Forest model. After accuracy assessments by comparing with WorldPop, the proposed method was validated as a qualified method to generate fine-resolution population spatial maps. In the discussion, this paper suggested that without help of auxiliary data, NTL cannot be directly employed as a population indicator at small scale. The Variable Importance Measure of the RF model confirmed the correlation between features and population and further demonstrated that urban functions performed better than LULC (Land Use and Land Cover) in small-scale population mapping. Urban height was also shown to improve the performance of population disaggregation due to its compensation of building volume. To sum up, this proposed method showed great potential to disaggregate fine-resolution population and other urban socio-economic attributes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2038
Permanent link to this record
 

 
Author Shi, K.; Yu, B.; Huang, Y.; Hu, Y.; Yin, B.; Chen, Z.; Chen, L.; Wu, J.
Title Evaluating the Ability of NPP-VIIRS Nighttime Light Data to Estimate the Gross Domestic Product and the Electric Power Consumption of China at Multiple Scales: A Comparison with DMSP-OLS Data Type Journal Article
Year 2014 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 6 Issue 2 Pages 1705-1724
Keywords Remote Sensing
Abstract The nighttime light data records artificial light on the Earth’s surface and can be used to estimate the spatial distribution of the gross domestic product (GDP) and the electric power consumption (EPC). In early 2013, the first global NPP-VIIRS nighttime light data were released by the Earth Observation Group of National Oceanic and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC). As new-generation data, NPP-VIIRS data have a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. This study aims to investigate the potential of NPP-VIIRS data in modeling GDP and EPC at multiple scales through a case study of China. A series of preprocessing procedures are proposed to reduce the background noise of original data and to generate corrected NPP-VIIRS nighttime light images. Subsequently, linear regression is used to fit the correlation between the total nighttime light (TNL) (which is extracted from corrected NPP-VIIRS data and DMSP-OLS data) and the GDP and EPC (which is from the country’s statistical data) at provincial- and prefectural-level divisions of mainland China. The result of the linear regression shows that R2 values of TNL from NPP-VIIRS with GDP and EPC at multiple scales are all higher than those from DMSP-OLS data. This study reveals that the NPP-VIIRS data can be a powerful tool for modeling socioeconomic indicators; such as GDP and EPC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2042
Permanent link to this record
 

 
Author Du, M.; Wang, L.; Zou, S.; Shi, C.
Title Modeling the Census Tract Level Housing Vacancy Rate with the Jilin1-03 Satellite and Other Geospatial Data Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 12 Pages 1920
Keywords Remote Sensing
Abstract The vacant house is an essential phenomenon of urban decay and population loss. Exploration of the correlations between housing vacancy and some socio-environmental factors is conducive to understanding the mechanism of urban shrinking and revitalization. In recent years, rapidly developing night-time remote sensing, which has the ability to detect artificial lights, has been widely applied in applications associated with human activities. Current night-time remote sensing studies on housing vacancy rates are limited by the coarse spatial resolution of data. The launch of the Jilin1-03 satellite, which carried a high spatial resolution (HSR) night-time imaging camera, provides a new supportive data source. In this paper, we examined this new high spatial resolution night-time light dataset in housing vacancy rate estimation. Specifically, a stepwise multivariable linear regression model was engaged to estimate the housing vacancy rate at a very fine scale, the census tract level. Three types of variables derived from geospatial data and night-time image represent the physical environment, landuse (LU) structure, and human activities, respectively. The linear regression models were constructed and analyzed. The analysis results show that (1) the HVRs estimating model using the Jilin1-03 satellite and other ancillary geospatial data fits well with the Census statistical data (adjusted R2 = 0.656, predicted R2 = 0.603, RMSE = 0.046) and thus is a valid estimation model; (2) the Jilin1-03 satellite night-time data contributed a 28% (from 0.510 to 0.656) fitting accuracy increase and a 68% (from 0.359 to 0.603) predicting accuracy increase in the estimate model of the housing vacancy rate. Reflecting socio-economic conditions, the luminous intensity of commercial areas derived from the Jilin1-03 satellite is the most influential variable to housing vacancy. Land use structure indirectly and partially demonstrated that the social environment factors in the community have strong correlations with residential vacancy. Moreover, the physical environment factor, which depicts vegetation conditions in the residential areas, is also a significant indicator of housing vacancy. In conclusion, the emergence of HSR night light data opens a new door to future microscopic scale study within cities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2124
Permanent link to this record
 

 
Author Su, Y.; Yue, J.; Liu, X.; Miller, S.D.; Ш, W.C.S.; Smith, S.M.; Guo, D.; Guo, S.
Title Mesospheric Bore Observations Using Suomi-NPP VIIRS DNB during 2013–2017 Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 12 Pages 1935
Keywords Airglow; Remote Sensing
Abstract This paper reports mesospheric bore events observed by Day/Night Band (DNB) of the Visible/Infrared Imaging Radiometer Suite (VIIRS) on the National Oceanic and Atmospheric Administration/National Aeronautics and Space Administration (NOAA/NASA) Suomi National Polar-orbiting Partnership (NPP) environmental satellite over five years (2013–2017). Two types of special mesospheric bore events were observed, enabled by the wide field of view of VIIRS: extremely wide bores (>2000 km extension perpendicular to the bore propagation direction), and those exhibiting more than 15 trailing crests and troughs. A mesospheric bore event observed simultaneously from space and ground was investigated in detail. DNB enables the preliminary global observation of mesospheric bores for the first time. DNB mesospheric bores occurred more frequently in March, April and May. Their typical lengths are between 300 km and 1200 km. The occurrence rate of bores at low latitudes is higher than that at middle latitudes. Among the 61 bore events, 39 events occurred in the tropical region (20°S–20°N). The high occurrence rate of mesospheric bores during the spring months in the tropical region coincides with the reported seasonal and latitudinal variations of mesospheric inversion layers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2128
Permanent link to this record