|   | 
Details
   web
Records
Author Avtar, R.; Tripathi, S.; Aggarwal, A.K.
Title Assessment of Energy–Population–Urbanization Nexus with Changing Energy Industry Scenario in India Type Journal Article
Year 2019 Publication Land Abbreviated Journal Land
Volume 8 Issue 8 Pages 124
Keywords Remote Sensing
Abstract The demand for energy has been growing worldwide, especially in India partly due to the rapid population growth and urbanization of the country. To meet the ever-increasing energy requirement while maintaining an ecological balance is a challenging task. However, the energy industry-induced effect on population and urbanization has not been addressed before. Therefore, this study investigates the linkages between energy, population, and urbanization. The study also aims to find the quantifiable indicators for the population growth and rate of urbanization due to the expanding energy industry. The integrated framework uses a multi-temporal Landsat data to analyze the urbanization pattern, a census data for changes in population growth, night time light (NTL) data as an indicator for economic development and energy production and consumption data for energy index. Multi-attribute model is used to calculate a unified metric, termed as the energy–population–urbanization (EPU) nexus index. The proposed approach is demonstrated in the National Thermal Power Corporation (NTPC) Dadri power plant located in Uttar Pradesh, India. Landsat and NTL data clearly shows the urbanization pattern, economic development, and electrification in the study area. A comparative analysis based on various multi-attribute decision model assessment techniques suggests that the average value of EPU nexus index is 0.529, which significantly large compared to other studies and require special attention by policymakers because large EPU index indicates stronger correlation among energy, population, and urbanization. The authors believe that it would help the policymakers in planning and development of future energy projects, policies, and long-term strategies as India is expanding its energy industry.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-445X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2659
Permanent link to this record
 

 
Author Xu, C.; Wang, H.-J.; Yu, Q.; Wang, H.-Z.; Liang, X.-M.; Liu, M.; Jeppesen, E.
Title Effects of Artificial LED Light on the Growth of Three Submerged Macrophyte Species during the Low-Growth Winter Season: Implications for Macrophyte Restoration in Small Eutrophic Lakes Type Journal Article
Year 2019 Publication Water Abbreviated Journal Water
Volume 11 Issue 7 Pages 1512
Keywords Plants
Abstract Eutrophication of lakes is becoming a global environmental problem, leading to, among other things, rapid reproduction of phytoplankton, increased turbidity, loss of submerged macrophytes, and the recovery of these plants following nutrient loading reduction is often delayed. Artificial light supplement could potentially be a useful method to help speeding up recovery. In this study, three common species of submerged macrophytes, Vallisneria natans, Myriophyllum spicatum and Ceratophyllum demersum, were exposed to three LED light treatments (blue, red and white) and shaded (control) for 100 days (from 10 November 2016 to 18 January 2017) in 12 tanks holding 800 L of water. All the three LED light treatments promoted growth of the three macrophyte species in terms of shoot number, length and dry mass. The three light treatments differed in their effects on the growth of the plants; generally, the red light had the strongest promoting effects, followed by blue and white. The differences in light effects may be caused by the different photosynthetic photon flux density (PPFD) of the lights, as indicated by an observed relationship of PPFD with the growth variables. The three species also responded differently to the light treatments, V. natans and C. demersum showing higher growth than M. spicatum. Our findings demonstrate that artificial light supplement in the low-growth winter season can promote growth and recovery of submerged macrophytes and hence potentially enhance their competitiveness against phytoplankton in the following spring. More studies, however, are needed to elucidate if LED light treatment is a potential restoration method in small lakes, when the growth of submerged macrophytes are delayed following a sufficiently large external nutrient loading reduction for a shift to a clear macrophyte state to have a potential to occur. Our results may also be of relevance when elucidating the role of artificial light from cities on the ecosystem functioning of lakes in urban areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4441 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2606
Permanent link to this record
 

 
Author Paranunzio, R.; Ceola, S.; Laio, F.; Montanari, A.
Title Evaluating the Effects of Urbanization Evolution on Air Temperature Trends Using Nightlight Satellite Data Type Journal Article
Year 2019 Publication Atmosphere Abbreviated Journal Atmosphere
Volume 10 Issue 3 Pages 117
Keywords Remote Sensing
Abstract Confounding factors like urbanization and land-use change could introduce uncertainty to the estimation of global temperature trends related to climate change. In this work, we introduce a new way to investigate the nexus between temporal trends of temperature and urbanization data at the global scale in the period from 1992 to 2013. We analyze air temperature data recorded from more than 5000 weather stations worldwide and nightlight satellite measurements as a proxy for urbanization. By means of a range of statistical methods, our results quantify and outline that the temporal evolution of urbanization affects temperature trends at multiple spatial scales with significant differences at regional and continental scales. A statistically significant agreement in temperature and nightlight trends is detected, especially in low and middle-income regions, where urbanization is rapidly growing. Conversely, in continents such as Europe and North America, increases in temperature trends are typically detected along with non-significant nightlight trends.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4433 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2249
Permanent link to this record
 

 
Author Shor, E.; Potavskaya, R.; Kurtz, A.; Paik, I.; Huq, E.; Green, R.
Title PIF-mediated sucrose regulation of the circadian oscillator is light quality and temperature dependent Type Journal Article
Year 2018 Publication Genes Abbreviated Journal Genes (Basel)
Volume 9 Issue 12 Pages
Keywords Plants
Abstract Studies are increasingly showing that metabolic and circadian (~24 h) pathways are strongly interconnected, with the circadian system regulating the metabolic state of the cell, and metabolic products feeding back to entrain the oscillator. In plants, probably the most significant impact of the circadian system on metabolism is in its reciprocal regulation of photosynthesis; however, the pathways by which this occurs are still poorly understood. We have previously shown that members of the basic helix-loop-helix (bHLH) transcription factor PHYTOCHROME INTERACTING FACTOR (PIF) family are involved in the photosynthate entrainment of the circadian oscillator. In this paper, using Arabidopsis mutants and overexpression lines, we examine how temperature and light quality affect PIF-mediated sucrose signaling to the oscillator and examine the contributions of individual PIF members. Our results also show that the quality of light is important for PIF signaling, with red and blue lights having the opposite effects, and that temperature affects PIF-mediated sucrose signaling. We propose the light sensitivity of PIF-mediated sucrose entrainment of the oscillator may be important in enabling plants to distinguish between sucrose produced de novo from photosynthesis during the day and the sucrose products of starch degradation at the end of the night.
Address Department of Plant and Environmental Sciences, Institute for Life Sciences, Edmond J. Safra Campus, Givat Ram, Hebrew University, Jerusalem 91904, Israel. rgreen@mail.huji.ac.il
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2073-4425 ISBN Medium
Area Expedition Conference
Notes PMID:30551669; PMCID:PMC6316277 Approved no
Call Number GFZ @ kyba @ Serial 2155
Permanent link to this record
 

 
Author Ma, T.
Title Multi-Level Relationships between Satellite-Derived Nighttime Lighting Signals and Social Media–Derived Human Population Dynamics Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue 7 Pages 1128
Keywords Remote Sensing
Abstract Satellite-based measurements of the artificial nighttime light brightness (NTL) have been extensively used for studying urbanization and socioeconomic dynamics in a temporally consistent and spatially explicit manner. The increasing availability of geo-located big data detailing human population dynamics provides a good opportunity to explore the association between anthropogenic nocturnal luminosity and corresponding human activities, especially at fine time/space scales. In this study, we used Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB)–derived nighttime light images and the gridded number of location requests (NLR) from China’s largest social media platform to investigate the quantitative relationship between nighttime light radiances and human population dynamics across China at four levels: the provincial, city, county, and pixel levels. Our results show that the linear relationship between the NTL and NLR might vary with the observation level and magnitude. The dispersion between the two variables likely increases with the observation scale, especially at the pixel level. The effect of spatial autocorrelation and other socioeconomic factors on the relationship should be taken into account for nighttime light-based measurements of human activities. Furthermore, the bivariate relationship between the NTL and NLR was employed to generate a partition of human settlements based on the combined features of nighttime lights and human population dynamics. Cross-regional comparisons of the partitioned results indicate a diverse co-distribution of the NTL and NLR across various types of human settlements, which could be related to the city size/form and urbanization level. Our findings may provide new insights into the multi-level responses of nighttime light signals to human activity and the potential application of nighttime light data in association with geo-located big data for investigating the spatial patterns of human settlement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1996
Permanent link to this record