|   | 
Details
   web
Records
Author Kim, Y.J.; Kim, H.M.; Kim, H.M.; Jeong, B.R.; Lee, H.-J.; Kim, H.-J.; Hwang, S.J.
Title Ice plant growth and phytochemical concentrations are affected by light quality and intensity of monochromatic light-emitting diodes Type Journal Article
Year 2018 Publication Horticulture, Environment, and Biotechnology Abbreviated Journal Hortic. Environ. Biotechnol.
Volume 59 Issue 4 Pages 529-536
Keywords Plants
Abstract The ice plant (Mesembryanthemum crystallinum L.), widely known to be an effective cure for diabetes mellitus, is also a functional crop. This study was conducted to examine the effects of light quality and intensity of monochromatic light-emitting diodes (LEDs) on ice plant growth and phytochemical concentrations in a closed-type plant production system. Ice plant seedlings were transplanted into a deep floating technique system with a recycling nutrient solution (EC 4.0 dS m−1, pH 6.5). Fluorescent lamps, as well as monochromatic red (660 nm) and blue (450 nm) LEDs, were used at 120 ± 5 or 150 ± 5 µmol m−2 s−1 PPFD with a photoperiod of 14 h/10 h (light/dark) for 4 weeks. Ice plants showed higher growth under the high light intensity treatment, especially under the red LEDs. Furthermore, the SPAD value and photosynthetic rate were higher under the red LEDs with 150 µmol m−2 s−1 PPFD. The ice plant phytochemical composition, such as antioxidant activity and myo-inositol and pinitol concentrations, were highest under the blue LEDs with 150 µmol m−2 s−1 PPFD. Total phenolic concentration was highest under the blue LEDs with 120 µmol m−2 s−1 PPFD. Despite a slightly different dependence on light intensity, phytochemical concentrations responded positively to the blue LED treatments, as compared to other treatments. In conclusion, this study suggests that red LEDs enhance ice plant biomass, while blue LEDs induce phytochemical
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2211-3452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1983
Permanent link to this record
 

 
Author Ngarambe, J.; Lim, H.S.; Kim, G.
Title Light Pollution: Is there an Environmental Kuznets Curve? Type Journal Article
Year 2018 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society
Volume 42 Issue Pages 337-343
Keywords Remote Sensing; Economics; Lighting
Abstract Light pollution is ranked high among recent forms of environmental degradation. While there have been many studies focusing on the diverse effects of artificial lighting on human health, wild life, etc., studies related to the social-economic impact of light pollution have been neglected. In the current paper, we assessed the relationship between economic development and light pollution. Using collected field data of illuminance levels as a measure of light pollution and land prices as an indicator of economic development, we drew conclusions about the effects of economic development on light pollution. The results did not show an inverted-U relationship between the two variables, hence denouncing the Environmental Kuznets Curve (EKC) theory. A regression analysis test showed an R-squared value of 0.322 at p > 0.215. Looking at the obtained results, which show no statistical significance between the two variables, we advise that local light pollution regulation laws and policies be equally stringent throughout districts/cities, regardless of economic status.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2210-6707 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1969
Permanent link to this record
 

 
Author Suk, J.Y.; Walter, R.J.
Title New nighttime roadway lighting documentation applied to public safety at night: A case study in San Antonio, Texas Type Journal Article
Year 2019 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society
Volume 46 Issue Pages 101459
Keywords Lighting; Public Safety; Security; Planning
Abstract Built environment and public safety professionals view street lighting as an important factor in improving the well-being of the community at night. Extant research that has examined the relationship between street lighting and public safety has found inconclusive or mixed results and has called for more extensive lighting metrics. Using new lighting measurement technologies and geographic information science, this study builds on previous work to demonstrate new metrics to consider when evaluating public safety, specifically crime and traffic accidents. Downtown San Antonio, Texas is used as a case study to explore illuminance levels on roadways and the driver’s eye, and how these metrics can be used to understand the lighting characteristics of where crime and traffic accidents occur. The findings indicate that the central downtown district in San Antonio has higher illuminance levels than the existing roadway lighting guidelines while the residential downtown neighborhoods have insufficient light levels. Statistical analysis reveals that roadway illuminance levels are higher in areas where no crime occurred and driver’s eye illuminance levels are lower in areas with no traffic accidents. The findings prove the usefulness of new lighting documentation techniques and support the importance of considering illuminance metrics when assessing crime and traffic accidents at night.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2210-6707 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2191
Permanent link to this record
 

 
Author Doulos, L.T.; Sioutis, I.; Kontaxis, P.; Zissis, G.; Faidas, K.
Title A decision support system for assessment of street lighting tenders based on energy performance indicators and environmental criteria: Overview, methodology and case study Type Journal Article
Year 2019 Publication Sustainable Cities and Society Abbreviated Journal Sustainable Cities and Society
Volume 51 Issue Pages 101759
Keywords Lighting; Policy
Abstract While LEDs are now the most efficient light sources, their adoption in the road lighting design has been delayed due to a variety of reasons such as malpractice, huge number of inappropriate luminaires, missing technical information and ineffective policies. An example is the, low luminous efficacy values, which confuse the decision makers for national roads. The new part of EN13201-5 describes many energy performance indicators, which are still not used in street light projects or in lighting simulation tools. The aim of this paper is a) to present the significance of using these indicators through a decision tool, capable to evaluate a number of lighting designs in a lighting tender and b) to propose an evaluation method as part of a future energy policy including environmental criteria. A case study is also presented. The results show that the aforementioned decision tool is necessary in order to evaluate the ranking of the corresponding offers. Thus, increased energy savings could be achieved together with environmental benefits. In the case examined, the best solution resulted in 72.1% energy savings and CO2 emission reduction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2210-6707 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2609
Permanent link to this record
 

 
Author Kerstel, E.; Gardelein, A.; Barthelemy, M.; Fink, M.; Joshi, S.K.; Ursin, R.
Title Nanobob: a CubeSat mission concept for quantum communication experiments in an uplink configuration Type Journal Article
Year 2018 Publication European physical journal quantum technology Abbreviated Journal EPJ Quantum Technol.
Volume 5 Issue 6 Pages 1-30
Keywords Remote Sensing
Abstract We present a ground-to-space quantum key distribution (QKD) mission concept and the accompanying feasibility study for the development of the associated low earth orbit nanosatellite payload. The quantum information is carried by single photons with the binary codes represented by polarization states of the photons. Distribution of entangled photons between the ground and the satellite can be used to certify the quantum nature of the link: a guarantee that no eavesdropping can take place. By placing the entangled photon source on the ground, the space segments contains “only” the less complex detection system, enabling its implementation in a compact enclosure, compatible with the 12U CubeSat standard (∼12 dm3). This reduces the overall cost of the project, making it an ideal choice as a pathfinder for future European quantum communication satellite missions. The space segment is also more versatile than one that contains the source since it is compatible with a multiple of QKD protocols (not restricted to entangled photon schemes) and can be used in quantum physics experiments, such as the investigation of entanglement decoherence. Other possible experiments include atmospheric transmission/turbulence characterization, dark area mapping, fine pointing and tracking, and accurate clock synchronization; all crucial for future global scale quantum communication efforts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN (down) 2196-0763 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2115
Permanent link to this record