|   | 
Details
   web
Records
Author Zangeneh, P.; Hamledari, H.; McCabe, B.
Title Quantifying Remoteness for Risk and Resilience Assessment Using Nighttime Satellite Imagery Type Journal Article
Year 2020 Publication Journal of Computing in Civil Engineering Abbreviated Journal J. Comput. Civ. Eng.
Volume 34 Issue (down) 5 Pages 04020026
Keywords Remote Sensing
Abstract Remoteness has a crucial role in risk assessments of megaprojects, resilience assessments of communities and infrastructure, and a wide range of public policymaking. The existing measures of remoteness require an extensive amount of population census and of road and infrastructure network data, and often are limited to narrow scopes. This paper presents a methodology to quantify remoteness using nighttime satellite imagery. The light clusters of nighttime satellite imagery are direct yet unintended consequences of human settled populations and urbanization; therefore, the absence of illuminated clusters is considered as evidence of remoteness. The proposed nighttime remoteness index (NIRI) conceptualizes the remoteness based on the distribution of nighttime lights within radii of up to 1,000 km. A predictive model was created using machine learning techniques such as multivariate adaptive regression splines and support vector machines regressions to establish a reliable and accurate link between nighttime lights and the Accessibility/Remoteness Index of Australia (ARIA). The model was used to establish NIRI for the United States and Canada, and in different years. The index was compared with the Canadian remoteness indexes published by Statistics Canada.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0887-3801 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2937
Permanent link to this record
 

 
Author Khanduri, M., & Saxena, A.
Title Ecological light pollution: Consequences for the aquatic ecosystem Type Journal Article
Year 2020 Publication International Journal of Fisheries and Aquatic Studies Abbreviated Journal
Volume 8 Issue (down) 5 Pages 1-5
Keywords Ecology; Animals
Abstract Light Pollution is a growing concern for man and the environment. As awareness of the issue grows, various studies reveal its hitherto unnoticed effects on various organisms and ecological processes. The aquatic ecosystem has not been untouched by its influence either, and although much research is still required in the field, an attempt has been made to compile studies and reviews on the effects of Ecological Light Pollution on the world under water. Light has both direct and indirect influences on aquatic systems, and some possible consequences on various aspects of aquatic ecology have been extrapolated from existing studies. It has been attempted to bring attention to some implications that Ecological Light Pollution may have for the aquatic communities, and the aspects that require further investigation for a better understanding of the consequences of increased artificial illumination for entire aquatic ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2954
Permanent link to this record
 

 
Author Fabian, M.; Lessmann, C.; Sofke, T.
Title Natural disasters and regional development – the case of earthquakes Type Journal Article
Year 2019 Publication Environment and Development Economics Abbreviated Journal Envir. Dev. Econ.
Volume 24 Issue (down) 5 Pages 479-505
Keywords Remote Sensing
Abstract We analyze the impact of earthquakes on nighttime lights at a sub-national level, i.e., on grids of different size. We argue that existing studies on the impact of natural disasters on economic development have several important limitations, both at the level of the outcome variable as well as at the level of the independent variable, e.g., the timing of an event and the measuring of its intensity. We aim to overcome these limitations by using geophysical event data on earthquakes together with satellite nighttime lights. Using panel fixed effects regressions covering the entire world for the period 1992–2013, we find that earthquakes reduce both light growth rates and light levels significantly. The effects persist for approximately 5 years, but we find no long-run effects. Effects are stronger the smaller the area of a unit of observation. National institutions and economic conditions are relevant moderating factors.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1355-770X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3000
Permanent link to this record
 

 
Author Bijveld, M.M.C.; van Genderen, M.M.; Hoeben, F.P.; Katzin, A.A.; van Nispen, R.M.A.; Riemslag, F.C.C.; Kappers, A.M.L.
Title Assessment of night vision problems in patients with congenital stationary night blindness Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue (down) 5 Pages e62927
Keywords Vision; Adolescent; Adult; Case-Control Studies; Child; *Dark Adaptation; Electroretinography; Eye Diseases, Hereditary/*physiopathology; Female; Genetic Diseases, X-Linked/*physiopathology; Humans; Light; Male; Middle Aged; Myopia/*physiopathology; Night Blindness/*physiopathology; *Night Vision; *Pattern Recognition, Visual; Surveys and Questionnaires; *Visual Acuity; Visual Fields
Abstract Congenital Stationary Night Blindness (CSNB) is a retinal disorder caused by a signal transmission defect between photoreceptors and bipolar cells. CSNB can be subdivided in CSNB2 (rod signal transmission reduced) and CSNB1 (rod signal transmission absent). The present study is the first in which night vision problems are assessed in CSNB patients in a systematic way, with the purpose of improving rehabilitation for these patients. We assessed the night vision problems of 13 CSNB2 patients and 9 CSNB1 patients by means of a questionnaire on low luminance situations. We furthermore investigated their dark adapted visual functions by the Goldmann Weekers dark adaptation curve, a dark adapted static visual field, and a two-dimensional version of the “Light Lab”. In the latter test, a digital image of a living room with objects was projected on a screen. While increasing the luminance of the image, we asked the patients to report on detection and recognition of objects. The questionnaire showed that the CSNB2 patients hardly experienced any night vision problems, while all CSNB1 patients experienced some problems although they generally did not describe them as severe. The three scotopic tests showed minimally to moderately decreased dark adapted visual functions in the CSNB2 patients, with differences between patients. In contrast, the dark adapted visual functions of the CSNB1 patients were more severely affected, but showed almost no differences between patients. The results from the “2D Light Lab” showed that all CSNB1 patients were blind at low intensities (equal to starlight), but quickly regained vision at higher intensities (full moonlight). Just above their dark adapted thresholds both CSNB1 and CSNB2 patients had normal visual fields. From the results we conclude that night vision problems in CSNB, in contrast to what the name suggests, are not conspicuous and generally not disabling.
Address Bartimeus Institute for the Visually Impaired, Zeist, The Netherlands. mbijveld@bartimeus.nl
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23658786; PMCID:PMC3643903 Approved no
Call Number GFZ @ kyba @ Serial 3051
Permanent link to this record
 

 
Author Windle, A. E., Hooley, D. S., & Johnston, D. W.
Title Robotic Vehicles Enable High-Resolution Light Pollution Sampling of Sea Turtle Nesting Beaches Type Journal Article
Year 2018 Publication Frontiers in Marine Science Abbreviated Journal
Volume 5 Issue (down) 493 Pages
Keywords Instrumentation; Animals; Skyglow
Abstract Nesting sea turtles appear to avoid brightly lit beaches and often turn back to sea prematurely when exposed to artificial light. Observations and experiments have noted that nesting turtles prefer darker areas where buildings and high dunes act as light barriers. As a result, sea turtles often nest on darker beaches, creating spatial concentrations of nests. Artificial nighttime light, or light pollution, has been quantified using a variety of methods. However, it has proven challenging to make accurate measurements of ambient light at fine scales and on smaller nesting beaches. Additionally, light has traditionally been measured from stationary tripods perpendicular to beach vegetation, disregarding the point of view of a nesting sea turtle. In the present study, nighttime ambient light conditions were assessed on three beaches in central North Carolina: a developed coastline of a barrier island, a nearby State Park on the same barrier island comprised of protected and undeveloped land, and a completely uninhabited wilderness on an adjacent barrier island in the Cape Lookout National Seashore. Using an autonomous terrestrial rover, high resolution light measurements (mag/arcsec2) were collected every minute with two ambient light sensors along transects on each beach. Spatial comparisons between ambient light and nesting density at and between these locations reveal that highest densities of nests occur in regions with lowest light levels, supporting the hypothesis that light pollution from coastal development may influence turtle nesting distribution. These results can be used to support ongoing management strategies to mitigate this pressing conservation issue.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2315
Permanent link to this record