|   | 
Details
   web
Records
Author Jiang, W.; He, G.; Leng, W.; Long, T.; Wang, G.; Liu, H.; Peng, Y.; Yin, R.; Guo, H.
Title Characterizing Light Pollution Trends across Protected Areas in China Using Nighttime Light Remote Sensing Data Type Journal Article
Year 2018 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 7 Issue (down) 7 Pages 243
Keywords Remote Sensing
Abstract Protected areas (PAs) with natural, ecological, and cultural value play important roles related to biological processes, biodiversity, and ecosystem services. Over the past four decades, the spatial range and intensity of light pollution in China has experienced an unprecedented increase. Few studies have been documented on the light pollution across PAs in China, especially in regions that provide a greater amount of important biodiversity conservation. Here, nighttime light satellite images from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) were selected to characterize light pollution trends across PAs using nighttime light indexes and hot spot analysis, and then the light pollution changes in PAs were classified. Furthermore, the causes of light pollution changes in PAs were determined using high-resolution satellite images and statistical data. The results showed the following: (1) Approximately 57.30% of PAs had an increasing trend from 1992 to 2012, and these PAs were mainly located in the eastern region, the central region, and a small part of the western region of China. Hot spot analysis showed that the patterns of change for the total night light and night light mean had spatial agglomeration characteristics; (2) The PAs affected by light pollution changes were divided into eight classes, of which PAs with stable trends accounted for 41%, and PAs with high increasing trends accounted for 10%. PAs that had high increasing trends with low density accounted for the smallest amount, i.e., only 1%; (3) The factors influencing light pollution changes in PAs included the distance to urban areas, mineral exploitation, and tourism development and the migration of residents. Finally, based on the status of light pollution encroachment into PAs, strategies to control light pollution and enhance the sustainable development of PAs are recommended.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1952
Permanent link to this record
 

 
Author Lu, Y.; Coops, N.C.
Title Bright lights, big city: Causal effects of population and GDP on urban brightness Type Journal Article
Year 2018 Publication PloS one Abbreviated Journal PLoS One
Volume 13 Issue (down) 7 Pages e0199545
Keywords Remote Sensing
Abstract Cities are arguably both the cause, and answer, to societies' current sustainability issues. Urbanization is the interplay between a city's physical growth and its socio-economic development, both of which consume a substantial amount of energy and resources. Knowledge of the underlying driver(s) of urban expansion facilitates not only academic research but, more importantly, bridges the gap between science, policy drafting, and practical urban management. An increasing number of researchers are recognizing the benefits of innovative remotely sensed datasets, such as nighttime lights data (NTL), as a proxy to map urbanization and subsequently examine the driving socio-economic variables in cities. We further these approaches, by taking a trans-pacific view, and examine how an array of socio-economic ind0icators of 25 culturally and economically important urban hubs relate to long term patterns in NTL for the past 21 years. We undertake a classic econometric approach-panel causality tests which allow analysis of the causal relationships between NTL and socio-economic development across the region. The panel causality test results show a contrasting effect of population and gross domestic product (GDP) on NTL in fast, and slowly, changing cities. Information derived from this study quantitatively chronicles urban activities in the pan-Pacific region and potentially offers data for studies that spatially track local progress of sustainable urban development goals.
Address Integrated Remote Sensing Studio, Forest Recourses Management, University of British Columbia, Vancouver, BC, Canada
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:29995923 Approved no
Call Number GFZ @ kyba @ Serial 1963
Permanent link to this record
 

 
Author Ma, T.
Title Multi-Level Relationships between Satellite-Derived Nighttime Lighting Signals and Social Media–Derived Human Population Dynamics Type Journal Article
Year 2018 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 10 Issue (down) 7 Pages 1128
Keywords Remote Sensing
Abstract Satellite-based measurements of the artificial nighttime light brightness (NTL) have been extensively used for studying urbanization and socioeconomic dynamics in a temporally consistent and spatially explicit manner. The increasing availability of geo-located big data detailing human population dynamics provides a good opportunity to explore the association between anthropogenic nocturnal luminosity and corresponding human activities, especially at fine time/space scales. In this study, we used Visible Infrared Imaging Radiometer Suite (VIIRS) day/night band (DNB)–derived nighttime light images and the gridded number of location requests (NLR) from China’s largest social media platform to investigate the quantitative relationship between nighttime light radiances and human population dynamics across China at four levels: the provincial, city, county, and pixel levels. Our results show that the linear relationship between the NTL and NLR might vary with the observation level and magnitude. The dispersion between the two variables likely increases with the observation scale, especially at the pixel level. The effect of spatial autocorrelation and other socioeconomic factors on the relationship should be taken into account for nighttime light-based measurements of human activities. Furthermore, the bivariate relationship between the NTL and NLR was employed to generate a partition of human settlements based on the combined features of nighttime lights and human population dynamics. Cross-regional comparisons of the partitioned results indicate a diverse co-distribution of the NTL and NLR across various types of human settlements, which could be related to the city size/form and urbanization level. Our findings may provide new insights into the multi-level responses of nighttime light signals to human activity and the potential application of nighttime light data in association with geo-located big data for investigating the spatial patterns of human settlement.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1996
Permanent link to this record
 

 
Author Pan, J.; Hu, Y.
Title Spatial Identification of Multi-dimensional Poverty in Rural China: A Perspective of Nighttime-Light Remote Sensing Data Type Journal Article
Year 2018 Publication Journal of the Indian Society of Remote Sensing Abbreviated Journal J Indian Soc Remote Sens
Volume 46 Issue (down) 7 Pages 1093-1111
Keywords Remote sensing
Abstract Poverty has emerged as one of the chronic dilemmas facing the development of human society during the twenty first century. Accurately identifying regions of poverty could lead to more effective poverty-alleviation programs. This study used a new type of remote-sensing data, NPP-VIIRS, to locate poverty-stricken areas based on nighttime light, taking Chongqing Municipality as a sample, and constructed a multidimensional poverty index (MPI) system, guided by a well-known and widely used conceptual framework of sustainable livelihood. A regression model was constructed and results were correlated with those using the average nighttime light index. The model was then tested on Shaanxi Province, and average relative error of the estimated MPI was only 11.12%. These results showed that multidimensional poverty had a high spatial concentration effect at the regional scale. We then applied the index nationwide, at the county scale, analyzing 2852 counties, which we divided into seven classifications, based on the MPI: extremely low, low, relatively low, medium, relatively high, high, and extremely high. Eight hundred forty-eight counties in 26 provinces were identified as multidimensionally poor. Among these, 254 were absolutely poor counties and 543 were relatively poor counties; 195 of these are not on the list of poverty-stricken counties as identified by income levels alone. By improving the accuracy of targeting, this method of identifying multidimensional poverty areas could help the Chinese government improve the effectiveness of poverty reduction strategies, and it could also be used as a reference for other countries or regions that seek to target poor areas that suffer multidimensional deprivation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0255-660X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2095
Permanent link to this record
 

 
Author Huang, Z.; Liu, Q.; Westland, S.; Pointer, M.; Luo, M.R.; Xiao, K.
Title Light dominates colour preference when correlated colour temperature differs Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume 50 Issue (down) 7 Pages 995-1012
Keywords Vision; Lighting
Abstract Colour preference for lighting is generally influenced by three kinds of contextual factors, the light, the object and the observer. In this study, a series of psychophysical experiments were conducted to investigate and compare the effect of certain factors on colour preference, including spectral power distribution of light, lighting application, observers’ personal colour preference, regional cultural difference and gender difference. LED lights with different correlated colour temperatures were used to illuminate a wide selection of objects. Participant response was quantified by a 7-point rating method or a 5-level ranking method. It was found that the preferred illumination for different objects exhibited a similar trend and that the influence of light was significantly stronger than that of other factors. Therefore, we conclude that the light itself (rather than, e.g. the objects that are viewed) is the most crucial factor for predicting which light, among several candidates with different correlated colour temperatures, an observer will prefer. In addition, some of the gamut-based colour quality metrics correlated well with the participants’ response, which corroborates the view that colour preference is strongly influenced by colour saturation. The familiarity of the object affects the ratings for each experiment while the colour of the objects also influences colour preference.
Address School of Printing and Packaging, Wuhan University, Luoyu Road 129, Wuhan, China; liuqiang(at)whu.edu.cn
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2256
Permanent link to this record