|   | 
Details
   web
Records
Author Cao, X.; Hu, Y.; Zhu, X.; Shi, F.; Zhuo, L.; Chen, J.
Title A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images Type Journal Article
Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 224 Issue (up) Pages 401-411
Keywords Remote Sensing
Abstract Night-time light (NTL) data from the Defense Meteorological Satellite Program (DMSP) Operation Linescan System (OLS) provide important observations of human activities; however, DMSP-OLS NTL data suffer from problems such as saturation and blooming. This research developed a self-adjusting model (SEAM) to correct blooming effects in DMSP-OLS NTL data based on a spatial response function and without using any ancillary data. By assuming that the pixels adjacent to the background contain no lights (i.e., pseudo light pixels, PLPs), the blooming effect intensity, a parameter in the SEAM model, can be estimated by pixel-based regression using PLPs and their neighboring light sources. SEAM was applied to all of China, and its performance was assessed for twelve cities with different population sizes. The results show that SEAM can largely reduce the blooming effect in the original DMSP-OLS dataset and enhance its quality. The images after blooming effect correction have higher spatial similarity with Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) images and higher spatial variability than the original DMSP-OLS data. We also found that the average effective blooming distance is approximately 3.5 km in China, which may be amplified if the city is surrounded by water surfaces, and that the blooming effect intensity is positively correlated to atmospheric quality. The effectiveness of the proposed model will improve the capacity of DMSP-OLS images for mapping the urban extent and modeling socioeconomic parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2239
Permanent link to this record
 

 
Author Hu, T.; Huang, X.
Title A novel locally adaptive method for modeling the spatiotemporal dynamics of global electric power consumption based on DMSP-OLS nighttime stable light data Type Journal Article
Year 2019 Publication Applied Energy Abbreviated Journal Applied Energy
Volume 240 Issue (up) Pages 778-792
Keywords Remote Sensing
Abstract Timely and reliable estimation of electricity power consumption (EPC) is essential to the rational deployment of electricity power resources. Nighttime stable light (NSL) data from the Defense Meteorological Satellite Program Operational Linescan System (DMSP-OLS) have the potential to model global 1-km gridded EPC. A processing chain to estimate EPC includes: (1) NSL data correction; and (2) regression model between EPC statistics and NSL data. For the global gridded EPC estimation, the current approach is to correct the global NSL image in a uniform manner and establish the linear relationships between NSL and EPC. However, the impacts of local socioeconomic inconsistencies on the NSL correction and model establishment are not fully considered. Therefore, in this paper, we propose a novel locally adaptive method for global EPC estimation. Firstly, we set up two options (with or without the correction) for each local area considering the global NSL image is not saturated everywhere. Secondly, three directions (forward, backward, or average) are alternatives for the inter-annual correction to remove the discontinuity effect of NSL data. Thirdly, four optional models (linear, logarithmic, exponential, or second-order polynomial) are adopted for the EPC estimation of each local area with different socioeconomic dynamic. Finally, the options for each step constitute all candidate processing chains, from which the optimal one is adaptively chosen for each local area based on the coefficient of determination. The results demonstrate that our product outperforms the existing one, at global, continental, and national scales. Particularly, the proportion of countries/districts with a high accuracy (MARE (mean of the absolute relative error)  ≤ 10%) increases from 17.8% to 57.8% and the percentage of countries/districts with inaccurate results (MARE > 50%) decreases sharply from 23.0% to 3.7%. This product can enhance the detailed understanding of the spatiotemporal dynamics of global EPC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-2619 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2242
Permanent link to this record
 

 
Author Hoglund, J.; Mitkus, M.; Olsson, P.; Lind, O.; Drews, A.; Bloch, N.I.; Kelber, A.; Strandh, M.
Title Owls lack UV-sensitive cone opsin and red oil droplets, but see UV light at night: retinal transcriptomes and ocular media transmittance Type Journal Article
Year 2019 Publication Vision Research Abbreviated Journal Vision Res
Volume 158 Issue (up) Pages 109-119
Keywords Animals; Vision; Birds; owls; Short-eared Owl; tawny owl; boreal owl; Long-eared Owl; Asio otus; Asio flammeus; Strix aluco; Aegolius funereus; cones; Photoreceptors
Abstract Most diurnal birds have cone-dominated retinae and tetrachromatic colour vision based on ultra-violet/violet-sensitive UV/V cones expressing short wavelength-sensitive opsin 1 (SWS1), S cones expressing short wavelength-sensitive opsin 2 (SWS2), M cones expressing medium wavelength-sensitive opsin (RH2) and L cones expressing long wavelength-sensitive opsin (LWS). Double cones (D) express LWS but do not contribute to colour vision. Each cone is equipped with an oil droplet, transparent in UV/V cones, but pigmented by carotenoids: galloxanthin in S, zeaxanthin in M, astaxanthin in L and a mixture in D cones. Owls (Strigiformes) are crepuscular or nocturnal birds with rod-dominated retinae and optical adaptations for high sensitivity. For eight species, the absence of functional SWS1 opsin has recently been documented, functional RH2 opsin was absent in three of these. Here we confirm the absence of SWS1 transcripts for the Long-eared owl (Asio otus) and demonstrate its absence for the Short-eared owl (Asio flammeus), Tawny owl (Strix aluco) and Boreal owl (Aegolius funereus). All four species had transcripts of RH2, albeit with low expression. All four species express all enzymes needed to produce galloxanthin, but lack CYP2J19 expression required to produce astaxanthin from dietary precursors. We also present ocular media transmittance of the Eurasian eagle owl (Bubo bubo) and Short-eared owl and predict spectral sensitivities of all photoreceptors of the Tawny owl. We conclude that owls, despite lacking UV/V cones, can detect UV light. This increases the sensitivity of their rod vision allowing them, for instance, to see UV-reflecting feathers as brighter signals at night.
Address Department of Biology, Lund University, Lund, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0042-6989 ISBN Medium
Area Expedition Conference
Notes PMID:30825468 Approved no
Call Number GFZ @ kyba @ Serial 2245
Permanent link to this record
 

 
Author Arendt, J.; Middleton, B.
Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume 258 Issue (up) Pages 250-258
Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal
Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6480 ISBN Medium
Area Expedition Conference
Notes PMID:28526480 Approved no
Call Number IDA @ john @ Serial 2248
Permanent link to this record
 

 
Author Cochard, P.; Galstian, T.; Cloutier, C.
Title The proportion of blue light affects parasitoid wasp behavior in LED-extended photoperiod in greenhouses: Increased parasitism and offspring sex ratio bias Type Journal Article
Year 2019 Publication Biological Control Abbreviated Journal Biological Control
Volume 133 Issue (up) Pages 9-17
Keywords Animals
Abstract The increasing use of specific wavelengths involving light-emitting diodes (LEDs) under greenhouses enables to overcome the lack of light during winter months, helping crops photosynthesis or vegetative growth. However, modification of the light environment as well as the photoperiod may also alter directly or indirectly the activity of both beneficial and pest insects that depend on plants. Here, we submitted the parasitic wasp Aphidius ervi and its main host the pea aphid, to 4 ratios of red(R): blue(B) LEDs used to lengthen the photoperiod inside a growth chamber. We recorded the parasitism rate of aphids and the sex ratio of newly emerged wasps to evaluate if A. ervi could remain an efficient biological control agent under modified light environments. We found that increasing the 8 h of photophase to 16 h by supplementing with R/B LEDs increased the daily parasitic activity of the wasp as well as their egg laying behavior. Under the 100R light supplement, about 80% of the emerged adults were males, against 50% under 25R:75B light treatment. These results indicate that A. ervi remains a good biological control agent when the light environment is modified. However, the use of red light to extend the photophase has the potential to negatively affect population dynamics of these parasitoids due to its male-bias impact on the sex ratio.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1049-9644 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2253
Permanent link to this record