|   | 
Details
   web
Records
Author Marx, A.; Ziegler Rogers, M.
Title Analysis of Panamanian DMSP/OLS nightlights corroborates suspicions of inaccurate fiscal data: A natural experiment examining the accuracy of GDP data Type Journal Article
Year 2017 Publication Remote Sensing Applications: Society and Environment Abbreviated Journal Remote Sensing Applications: Society and Environment
Volume 8 Issue (up) Pages 99-104
Keywords Remote Sensing
Abstract Governments have incentives to misreport their economic productivity to advance their political goals. These incentives have long been understood, but the validity of government data has been difficult to estimate in the absence of viable external estimates. Using historic Defense Meteorological Satellite Program's Operational Linescan System nightlights imagery we corroborate reports that Panama's government data has been increasingly politicised since the handover of the Panama Canal on 31 December 1999. The Canal Handover represents a “natural experiment” in which the production of government data changed in Panama for reasons separate from the desire to manipulate that data. The amount of light a country produces at night, known as nightlight production, has been shown to strongly correlate with GDP. Using subnational Panamanian nightlight production from 1996 to 2012, we detect a significant divergence between the relationship of subnational reported GDP and nightlights before the Canal handover (when the U.S.A. was very involved in their statistical agencies) and the correlation after the handover (with no U.S. involvement). Our results indicate that between 2000 and 2012, Panama reported approximately 19% more GDP than what was expected by their nightlight production from 2000 to 2012, or a total of around 40 billion U.S. dollars. Our results suggest governments may engage in political manipulation of government statistics to improve the appearance of government performance. While indirect data can never definitely confirm economic phenomena, this analysis presents a unique research design and application of historic satellite imagery to corroborate reports of GDP misreporting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-9385 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2479
Permanent link to this record
 

 
Author Wang, L.; Wang, S.; Zhou, Y.; Liu, W.; Hou, Y.; Zhu, J.; Wang, F.
Title Mapping population density in China between 1990 and 2010 using remote sensing Type Journal Article
Year 2018 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 210 Issue (up) Pages 269-281
Keywords Remote Sensing
Abstract Knowledge of the spatial distribution of populations at finer spatial scales is of significant value and fundamental to many applications such as environmental change, urbanization, regional planning, public health, and disaster management. However, detailed assessment of the population distribution data of countries that have large populations (such as China) and significant variation in distribution requires improved data processing methods and spatialization models. This paper described the construction of a novel population spatialization method by combining land use/cover data and night-light data. Based on the analysis of data characteristics, the method used partial correlation analysis and geographically weighted regression to improve the distribution accuracy and reduce regional errors. China's census data for the years 1990, 2000, and 2010 were assessed. The results showed that the method was better at population spatialization than methods that use only night-light data or land use/cover data and global linear regression. Evaluation of overall accuracies revealed that the coefficient of correlation R-square was >0.90 and increased by >0.13 in the years 1990, 2000, and 2010. Moreover, the local R-square of over 90% of the samples (counties) was higher than the adjusted R-square of the general linear regression model. Furthermore, the gridded population density datasets obtained by this method can be used to analyse spatial-temporal patterns of population density and provide population distribution information with increased accuracy and precision compared to conventional models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2480
Permanent link to this record
 

 
Author Tan, M.; Li, X.; Li, S.; Xin, L.; Wang, X.; Li, Q.; Li, W.; Li, Y.; Xiang, W.
Title Modeling population density based on nighttime light images and land use data in China Type Journal Article
Year 2018 Publication Applied Geography Abbreviated Journal Applied Geography
Volume 90 Issue (up) Pages 239-247
Keywords Remote Sensing
Abstract Population change is a key variable that influences climate change, ecological construction, soil and water use, and economic growth. Census data are always point data, whereas planar data are often required in scientific research. By using nighttime light (NTL) images and land use data, combined with the fifth and sixth census data of China at the county level, we carried out spatial matching on the population of each county, respectively, and established population density diagrams of China for 2000 and 2010, which had a spatial resolution of 1 × 1 km. The method proposed in this paper is relatively simple and has a high simulation precision. The results showed that during the first ten years of the 21st century, there are some remarkable characteristics in Chinese population spatial pattern change: 1) the “disappearance” of intermediate-density regions; namely, areas with a population density between 500 and 1500 persons/km2 have decreased by 41% during the ten years; 2) continuous growth of high-density regions; namely, areas with a population density of more than 1500 persons/km2 have increased by 76%; 3) an expansion tendency of low-density regions similar to high-density regions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0143-6228 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2481
Permanent link to this record
 

 
Author Rossi, F.; Bonamente, E.; Nicolini, A.; Anderini, E.; Cotana, F.
Title A carbon footprint and energy consumption assessment methodology for UHI-affected lighting systems in built areas Type Journal Article
Year 2016 Publication Energy and Buildings Abbreviated Journal Energy and Buildings
Volume 114 Issue (up) Pages 96-103
Keywords Remote Sensing; Energy
Abstract This paper investigates the effects of urban heat island (UHI) on outdoor lighting systems in terms of GHG emissions: a novel methodology is proposed to assess the carbon footprint (CF) change of lighting services in built areas caused by UHI-induced ΔT with particular focus on the evaluation of the energy consumption. The methodology can be applied also to other activities affected by the UHI, such as HVAC and transport systems. In particular, ΔCF was introduced by a two-fold approach: the quantification of the CF change due to UHI (as difference between CF in an UHI-affected case and CF for an UHI-less case) and the CF change produced by a 1 °C temperature change. A focus on LED lamps was developed: the lifetime of LEDs exponentially decreases with increasing temperature and the luminous flux exponentially decays with operation time. UHI (i.e. the increase in ambient temperature) affects the lifetime and the luminous flux of lamps producing higher energy consumption and higher replacement rates. Results showed that a positive ΔT due to UHI produces a positive ΔCF, which also becomes economically relevant in long-term scenarios. A case study was analyzed by applying the proposed methodology to Rome outdoor public lighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0378-7788 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2483
Permanent link to this record
 

 
Author Shi, K.; Chen, Y.; Yu, B.; Xu, T.; Yang, C.; Li, L.; Huang, C.; Chen, Z.; Liu, R.; Wu, J.
Title Detecting spatiotemporal dynamics of global electric power consumption using DMSP-OLS nighttime stable light data Type Journal Article
Year 2016 Publication Applied Energy Abbreviated Journal Applied Energy
Volume 184 Issue (up) Pages 450-463
Keywords Remote Sensing
Abstract The rapid development of global industrialization and urbanization has resulted in a great deal of electric power consumption (EPC), which is closely related to economic growth, carbon emissions, and the long-term stability of global climate. This study attempts to detect spatiotemporal dynamics of global EPC using the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS) nighttime stable light (NSL) data. The global NSL data from 1992 to 2013 were intercalibrated via a modified invariant region (MIR) method. The global EPC at 1 km resolution was then modeled using the intercalibrated NSL data to assess spatiotemporal dynamics of EPC from a global scale down to continental and national scales. The results showed that the MIR method not only reduced the saturated lighted pixels, but also improved the continuity and comparability of the NSL data. An accuracy assessment was undertaken and confined that the intercalibrated NSL data were relatively suitable and accurate for estimating EPC in the world. Spatiotemporal variations of EPC were mainly identified in Europe, North America, and Asia. Special attention should be paid to China where the high grade and high-growth type of EPC covered 0.409% and 1.041% of the total country area during the study period, respectively. The results of this study greatly enhance the understanding of spatiotemporal dynamics of global EPC at the multiple scales. They will provide a scientific evidence base for tracking spatiotemporal dynamics of global EPC.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-2619 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2486
Permanent link to this record