|   | 
Details
   web
Records
Author Wang, W., & Cao, C.
Title NOAA-20 VIIRS DNB Aggregation Mode Change: Prelaunch Efforts and On-Orbit Verification/Validation Results Type Journal Article
Year 2019 Publication IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing Abbreviated Journal
Volume 12 Issue 7 Pages
Keywords (down) Remote Sensing; Radiometry; Earth; Satellite broadcasting; US Government agencies; Geology; Detectors; VIIRS-DNB
Abstract The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board the National Oceanic and Atmospheric Administration-20 (NOAA-20, previously named Joint Polar Satellite System-1 or J1) satellite was successfully launched in late 2017, following six years of a successful operation by its predecessor on the Suomi National Polar-Orbiting Partnership (S-NPP) satellite. NOAA-20 VIIRS day/night band (DNB) adopts a new on-board aggregation option (Op21), which is different from S-NPP DNB (using Op32), to mitigate high non-linearity at high scan angles, observed in its radiometric response during prelaunch test. As a result, NOAA-20 VIIRS DNB has a larger scan angle at the end of scan (∼60.5°) and exhibits a unique feature, i.e., ∼600 km extended Earth view (EV) samples, compared to S-NPP DNB and other VIIRS bands. VIIRS geolocation (GEO) algorithm and geometric calibration parameters were analyzed in-depth and subsequently modified to accommodate the NOAA-20 VIIRS DNB aggregation mode change. The GEO code change was tested using S-NPP data; S-NPP DNB simulated J1 DNB radiance and limited J1 prelaunch test data. After the launch, it was further verified using NOAA-20 VIIRS on-orbit observations. Our results show that the prelaunch VIIRS GEO code change performs well. GEO validation results using nighttime point sources show that NOAA-20 DNB GEO errors are comparable to those for S-NPP DNB over the nominal EV range, with averaged nadir equivalent GEO errors less than 200 m after on-bit updates. Over the extended EV samples (scan angle > 56.06°), the averaged GEO errors are less than 500 m. Moreover, NOAA-20 VIIRS DNB radiometric calibration performance is comparable to S-NPP.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2350
Permanent link to this record
 

 
Author Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z.
Title Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 17 Pages 1958
Keywords (down) Remote Sensing; Public Safety; Crime
Abstract Previous research has recognized the importance of edges to crime. Various scholars have explored how one specific type of edges such as physical edges or social edges affect crime, but rarely investigated the importance of the composite edge effect. To address this gap, this study introduces nightlight data from the Visible Infrared Imaging Radiometer Suite sensor on the Suomi National Polar-orbiting Partnership Satellite (NPP-VIIRS) to measure composite edges. This study defines edges as nightlight gradients—the maximum change of nightlight from a pixel to its neighbors. Using nightlight gradients and other control variables at the tract level, this study applies negative binomial regression models to investigate the effects of edges on the street robbery rate and the burglary rate in Cincinnati. The Akaike Information Criterion (AIC) of models show that nightlight gradients improve the fitness of models of street robbery and burglary. Also, nightlight gradients make a positive impact on the street robbery rate whilst a negative impact on the burglary rate, both of which are statistically significant under the alpha level of 0.05. The different impacts on these two types of crimes may be explained by the nature of crimes and the in-situ characteristics, including nightlight.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2828
Permanent link to this record
 

 
Author Schuler, L.D.; Schatz, R.; Berweger, C.D.
Title From global radiance to an increased local political awareness of light pollution Type Journal Article
Year 2018 Publication Environmental Science & Policy Abbreviated Journal Environmental Science & Policy
Volume 89 Issue Pages 142-152
Keywords (down) Remote Sensing; Public Safety; Animals
Abstract We present a novel transparent method to analyze measurements of the Suomi NPP (Suomi National Polar-orbiting Partnership) satellite in night vision, into luminous intensity and luminance on the community level, with a special focus to address light planners and non-experts, and for the first time, to further address politicians, decision-makers and law-makers, and governmental agencies. We checked the propagated efficiency of road lighting and its impact on luminous flux, and identified a waste of light emissions in the largest city of Switzerland, Zurich. We looked at security (issues like criminal acts) and found no correlation with communities’ luminous intensity. We assessed road safety (accidents) against local luminance and found no evidence of darkness being more risky when the overall distribution of illuminance on roads is considered. We screened crayfish habitats in the Canton of Zurich against local illuminance and found clear evidence of preferred darkness for the living. Based on this finding, we propose an upper limit for light immissions in the crayfish habitats. These four analyses have been chosen to demonstrate the usefulness of Suomi NPP's coverage in combination with our approach. We could apply it to ecological, social and economical topics. We hope others will follow and we can draw more attention of governments to take action to reduce the light pollution on local levels, like Langnau am Albis of Switzerland has exemplified.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1462-9011 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1965
Permanent link to this record
 

 
Author Franklin, M.; Chau, K.; Cushing, L.J.; Johnston, J.
Title Characterizing flaring from unconventional oil and gas operations in south Texas using satellite observations Type Journal Article
Year 2019 Publication Environmental Science & Technology Abbreviated Journal Environ Sci Technol
Volume 53 Issue 4 Pages 2220-2228
Keywords (down) Remote Sensing; petroleum; Texas; United States; VIIRS-DNB; Eagle Ford Shale; flaring; oil and gas
Abstract Over the past decade, increases in high-volume hydraulic fracturing for oil and gas extraction in the United States have raised concerns with residents living near wells. Flaring, or the combustion of petroleum products into the open atmosphere, is a common practice associated with oil and gas exploration and production, and has been under-examined as a potential source of exposure. We leveraged data from the Visible Infrared Imaging Spectroradiometer (VIIRS) Nightfire satellite product to characterize the extent of flaring in the Eagle Ford Shale region of south Texas, one of the most productive in the nation. Spatiotemporal hierarchical clustering identified flaring sources, and a regression-based approach combining VIIRS information with reported estimates of vented and flared gas from the Railroad Commission of Texas enabled estimation of flared gas volume at each flare. We identified 43,887 distinct oil and gas flares in the study region from 2012-2016, with a peak in activity in 2014 and an estimated 4.5 billion cubic meters of total gas volume flared over the study period. A comparison with well permit data indicated the majority of flares were associated with oil-producing (82%) and horizontally-drilled (92%) wells. Of the 49 counties in the region, 5 accounted for 71% of the total flaring. Our results suggest flaring may be a significant environmental exposure in parts of this region.
Address Department of Preventive Medicine, University of Southern California, Los Angeles California 90032, United States; meredith.franklin(at)usc.edu
Corporate Author Thesis
Publisher ACS Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0013-936X ISBN Medium
Area Expedition Conference
Notes PMID:30657671 Approved no
Call Number GFZ @ kyba @ Serial 2175
Permanent link to this record
 

 
Author Song, J.; Tong, X.; Wang, L.; Zhao, C.; Prishchepov, A.V.
Title Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach Type Journal Article
Year 2019 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning
Volume 190 Issue Pages 103580
Keywords (down) Remote Sensing; nighttime light; numerical methods
Abstract Spatial distribution information on population density is essential for understanding urban dynamics. In recent decades, remote sensing techniques have often been applied to assess population density, particularly night-time light data (NTL). However, such attempts have resulted in mapped population density at coarse/medium resolution, which often limits the applicability of such data for fine-scale territorial planning. The improved quality and availability of multi-source remote sensing imagery and location-based service data (LBS) (from mobile networks or social media) offers new potential for providing more accurate population information at the micro-scale level. In this paper, we developed a fine-scale population distribution mapping approach by combining the functional zones (FZ) mapped with high-resolution satellite images, NTL data, and LBS data. Considering the possible variations in the relationship between population distribution and nightlight brightness in functional zones, we tested and found spatial heterogeneity of the relationship between NTL and the population density of LBS samples. Geographically weighted regression (GWR) was thus implemented to test potential improvements to the mapping accuracy. The performance of the following four models was evaluated: only ordinary least squares regression (OLS), only GWR, OLS with functional zones (OLS&FZ) and GWR with functional zones (GWR&FZ). The results showed that NTL-based GWR&FZ was the most accurate and robust approach, with an accuracy of 0.71, while the mapped population density was at a unit of 30 m spatial resolution. The detailed population density maps developed in our approach can contribute to fine-scale urban planning, healthcare and emergency responses in many parts of the world.
Address Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark; songjinchao08(at)163.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0169-2046 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2516
Permanent link to this record