|   | 
Details
   web
Records
Author Haddock, J.K.; Threlfall, C.G.; Law, B.; Hochuli, D.F.
Title Light pollution at the urban forest edge negatively impacts insectivorous bats Type Journal Article
Year 2019 Publication Biological Conservation Abbreviated Journal Biological Conservation
Volume 236 Issue Pages 17-28
Keywords (up) Animals
Abstract Connectivity and quality of vegetation in cities, including urban forests, can promote urban biodiversity. However the impact of anthropogenic pressures at the forest-matrix edge, particularly artificial light at night (ALAN), on connectivity has received little attention. We assessed the influence of artificial light at forest edges on insectivorous bats. We acoustically surveyed 31 forest edges across greater Sydney, Australia, half with mercury vapour streetlights and half in ambient darkness, and compared the bat assemblage and activity levels to urban forest interiors. We also sampled the flying insect community to establish whether changes in insect densities under lights drive changes in insectivorous bat activity. We recorded 9965 bat passes from 16 species or species groups throughout our acoustic survey. The activity of all bats, and bats hypothesised to be sensitive to artificial light, was consistently higher in forest interiors as opposed to edges. We found that slower flying bats adapted to cluttered vegetation or with a relatively high characteristic echolocation call frequency; Chalinolobus morio, Miniopterus australis, Vespadelus vulturnus, and Nyctophilus spp., were negatively affected by artificial light sources at the forest edge. The emergence time of Vespadelus vulturnus was also significantly delayed by the presence of streetlights at the forest edge. Conversely, generalist faster flying bats; Chalinolobus gouldii, Ozimops ridei, Austronomous australis, Saccolaimus flaviventris, and Miniopterus orianae oceanensis, were unaffected by artificial light at the edge of urban forest, and used light and dark forest edges in a similar way. Insect surveys showed that larger lepidopterans seemed to be attracted to lit areas, but in low numbers. Artificial light sources on the edges of urban forest have diverse effects on bats and insects, and should be considered an anthropogenic edge effect that can reduce available habitat and decrease connectivity for light-sensitive species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2505
Permanent link to this record
 

 
Author Welz, P.-S.; Zinna, V.M.; Symeonidi, A.; Koronowski, K.B.; Kinouchi, K.; Smith, J.G.; Guillen, I.M.; Castellanos, A.; Crainiciuc, G.; Prats, N.; Caballero, J.M.; Hidalgo, A.; Sassone-Corsi, P.; Benitah, S.A.
Title BMAL1-Driven Tissue Clocks Respond Independently to Light to Maintain Homeostasis Type Journal Article
Year 2019 Publication Cell Abbreviated Journal Cell
Volume 177 Issue 6 Pages 1436-1447.e12
Keywords (up) Animals
Abstract Circadian rhythms control organismal physiology throughout the day. At the cellular level, clock regulation is established by a self-sustained Bmal1-dependent transcriptional oscillator network. However, it is still unclear how different tissues achieve a synchronized rhythmic physiology. That is, do they respond independently to environmental signals, or require interactions with each other to do so? We show that unexpectedly, light synchronizes the Bmal1-dependent circadian machinery in single tissues in the absence of Bmal1 in all other tissues. Strikingly, light-driven tissue autonomous clocks occur without rhythmic feeding behavior and are lost in constant darkness. Importantly, tissue-autonomous Bmal1 partially sustains homeostasis in otherwise arrhythmic and prematurely aging animals. Our results therefore support a two-branched model for the daily synchronization of tissues: an autonomous response branch, whereby light entrains circadian clocks without any commitment of other Bmal1-dependent clocks, and a memory branch using other Bmal1-dependent clocks to “remember” time in the absence of external cues.
Address Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; ICREA, Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain. Electronic address: salvador.aznar-benitah@irbbarcelona.org
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0092-8674 ISBN Medium
Area Expedition Conference
Notes PMID:31150620 Approved no
Call Number GFZ @ kyba @ Serial 2513
Permanent link to this record
 

 
Author Opperhuizen, A.-L.; Foppen, E.; Jonker, M.; Wackers, P.; van Faassen, M.; van Weeghel, M.; van Kerkhof, L.; Fliers, E.; Kalsbeek, A.
Title Effects of Light-at-Night on the Rat Liver – A Role for the Autonomic Nervous System Type Journal Article
Year 2019 Publication Frontiers in Neuroscience Abbreviated Journal Front. Neurosci.
Volume 13 Issue Pages
Keywords (up) Animals
Abstract Exposure to light at night (LAN) has been associated with serious pathologies, including obesity, diabetes and cancer. Recently we showed that 2 h of LAN impaired glucose tolerance in rats. Several studies have suggested that the autonomic nervous system (ANS) plays an important role in communicating these acute effects of LAN to the periphery. Here, we investigated the acute effects of LAN on the liver transcriptome of male Wistar rats. Expression levels of individual genes were not markedly affected by LAN, nevertheless pathway analysis revealed clustered changes in a number of endocrine pathways. Subsequently, we used selective hepatic denervations [sympathetic (Sx), parasympathetic (Px), total (Tx, i.e., Sx plus Px), sham] to investigate the involvement of the ANS in the effects observed. Surgical removal of the sympathetic or parasympathetic hepatic branches of the ANS resulted in many, but small changes in the liver transcriptome, including a pathway involved with circadian clock regulation, but it clearly separated the four denervation groups. On the other hand, analysis of the liver metabolome was not able to separate the denervation groups, and only 6 out of 78 metabolites were significantly up- or downregulated after denervations. Finally, removal of the sympathetic and parasympathetic hepatic nerves combined with LAN exposure clearly modulated the effects of LAN on the liver transcriptome, but left most endocrine pathways unaffected.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-453X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2539
Permanent link to this record
 

 
Author Molcan, L.; Sutovska, H.; Okuliarova, M.; Senko, T.; Krskova, L.; Zeman, M.
Title Dim light at night attenuates circadian rhythms in the cardiovascular system and suppresses melatonin in rats Type Journal Article
Year 2019 Publication Life Sciences Abbreviated Journal Life Sci
Volume 231 Issue Pages 116568
Keywords (up) Animals
Abstract AIMS: Cardiovascular parameters exhibit significant 24-h variability, which is coordinated by the suprachiasmatic nucleus (SCN), and light/dark cycles control SCN activity. We aimed to study the effects of light at night (ALAN; 1-2lx) on cardiovascular system control in normotensive rats. MAIN METHODS: Heart rate (HR) and blood pressure (BP) were measured by telemetry during five weeks of ALAN exposure. From beat-to-beat telemetry data, we evaluated spontaneous baroreflex sensitivity (sBRS). After 2 (A2) and 5 (A5) weeks of ALAN, plasma melatonin concentrations and the response of BP and HR to norepinephrine administration were measured. The expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 was determined in the aorta. Spontaneous exploratory behaviour was evaluated in an open-field test. KEY FINDINGS: ALAN significantly suppressed the 24-h variability in the HR, BP, and sBRS after A2, although the parameters were partially restored after A5. The daily variability in the BP response to norepinephrine was reduced after A2 and restored after A5. ALAN increased the BP response to norepinephrine compared to the control after A5. Increased eNOS expression was found in arteries after A2 but not A5. Endothelin-1 expression was not affected by ALAN. Plasma melatonin levels were suppressed after A2 and A5. Spontaneous exploratory behaviour was reduced. SIGNIFICANCE: ALAN decreased plasma melatonin and the 24-h variability in the haemodynamic parameters and increased the BP response to norepinephrine. A low intensity ALAN can suppress circadian control of the cardiovascular system with negative consequences on the anticipation of a load.
Address Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0024-3205 ISBN Medium
Area Expedition Conference
Notes PMID:31202842 Approved no
Call Number GFZ @ kyba @ Serial 2548
Permanent link to this record
 

 
Author Marín-Gómez, O.H, & MacGregor-Fors, I.
Title How Early Do Birds Start Chirping? Dawn Chorus Onset and Peak Times in a Neotropical City Type Journal Article
Year 2019 Publication Ardeola Abbreviated Journal
Volume 66 Issue 2 Pages 327-341
Keywords (up) Animals
Abstract Urbanisation poses important challenges for animal communication. Avian dawn choruses are a prominent component of urban soundscapes and have received attention in recent urban ecology studies. Current evidence based on comparisons of urban and non-urban sites suggest that urbanisation is associated with earlier dawn chorus singing activity. However, this phenomenon remains mainly unexplored in tropical cities. We here assessed dawn chorus onset and peak times in two contrasting conditions of the urbanisation intensity gradient (i.e., intra-urban and peri-urban forested areas) of a Neotropical city, Xalapa in Mexico, assessing relationships with noise at sunrise and artificial light at night. We found no differences in dawn chorus onset or singing peak times when contrasting intra- and peri-urban areas. However, we found non-significant trends for earlier chorus onsets and peak times with increasing noise levels. Our results show no relationship between artificial light at night and dawn chorus timing, adding evidence to recent studies showing that light pollution does not seem to be determinant in the dawn choruses of tropical birds. Further research is needed to include a wider array of urbanisation conditions and drivers of the singing routines of urban tropical birds. —Marín-Gómez, O.H. & MacGregor-Fors, I. (2019). How early do birds start chirping? Dawn chorus onset and peak times in a Neotropical city.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2553
Permanent link to this record