toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Chen, Y.; Cheng, M.; Su, T.; Gao, T.; Yu, W. url  doi
openurl 
  Title Constant light exposure aggravates POMC-mediated muscle wasting associated with hypothalamic alteration of circadian clock and SIRT1 in endotoxemia rats Type Journal Article
  Year 2018 Publication Biochemical and Biophysical Research Communications Abbreviated Journal Biochem Biophys Res Commun  
  Volume in press Issue Pages  
  Keywords (up) Animals  
  Abstract Constant light exposure is widespread in the intensive care unit (ICU) and could increase the rate of brain dysfunction as delirium and sleep disorders in critical patients. And the activation of hypothalamic neuropeptides is proved to play a crucial role in regulating hypercatabolism, especially skeletal muscle wasting in critical patients, which could lead to serious complications and poor prognosis. Here we investigated the hypothesis that constant light exposure could aggravate skeletal muscle wasting in endotoxemia rats and whether it was associated with alterations of circadian clock and hypothalamic proopiomelanocortin(POMC) expression. Fifty-four adult male Sprague-Dawley rats were intraperitoneally injected with lipopolysaccharide(LPS) or saline, subjected to constant light or a 12:12h light-dark cycle for 7 days. On day 8, rats were sacrificed across six time points in 24h and hypothalamus tissues and skeletal muscle were obtained. Rates of muscle wasting were measured by 3-methylhistidine(3-MH) and tyrosine release as well as expression of two muscle atrophic genes, muscle ring finger 1(MuRF-1) and muscle atrophy F-box(MAFbx). The expression of circadian clock genes, silent information regulator 1(SIRT1), POMC and hypothalamic inflammatory cytokines were also detected. Results showed that LPS administration significantly increased hypothalamic POMC expression, inflammatory cytokine levels and muscle wasting rates. Meanwhile constant light exposure disrupted the circadian rhythm, declined the expression of SIRT1 as well as aggravated hypothalamic POMC overexpression and skeletal muscle wasting in rats with endotoxemia. Taken together, the results demonstrated that constant light exposure could aggravate POMC-mediated skeletal muscle wasting in endotoxemia rats, which is associated with alteration of circadian clocks and SIRT1 in the hypothalamus.  
  Address Department of Intensive Care Unit, The Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, 210008, China. Electronic address: yudrnj2@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-291X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30528733 Approved no  
  Call Number GFZ @ kyba @ Serial 2134  
Permanent link to this record
 

 
Author Halfwerk, W.; Blaas, M.; Kramer, L.; Hijner, N.; Trillo, P.A.; Bernal, X.E.; Page, R.A.; Goutte, S.; Ryan, M.J.; Ellers, J. url  doi
openurl 
  Title Adaptive changes in sexual signalling in response to urbanization Type Journal Article
  Year 2018 Publication Nature Ecology & Evolution Abbreviated Journal Nat Ecol Evol  
  Volume 3 Issue Pages 374-380  
  Keywords (up) Animals  
  Abstract Urbanization can cause species to adjust their sexual displays, because the effectiveness of mating signals is influenced by environmental conditions. Despite many examples that show that mating signals in urban conditions differ from those in rural conditions, we do not know whether these differences provide a combined reproductive and survival benefit to the urban phenotype. Here we show that male tungara frogs have increased the conspicuousness of their calls, which is under strong sexual and natural selection by signal receivers, as an adaptive response to city life. The urban phenotype consequently attracts more females than the forest phenotype, while avoiding the costs that are imposed by eavesdropping bats and midges, which we show are rare in urban areas. Finally, we show in a translocation experiment that urban frogs can reduce risk of predation and parasitism when moved to the forest, but that forest frogs do not increase their sexual attractiveness when moved to the city. Our findings thus reveal that urbanization can rapidly drive adaptive signal change via changes in both natural and sexual selection pressures.  
  Address Department of Ecological Science, Vrije Universiteit, Amsterdam, The Netherlands  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2397-334X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30532046 Approved no  
  Call Number GFZ @ kyba @ Serial 2136  
Permanent link to this record
 

 
Author Czaczkes, T.J.; Bastidas-Urrutia, A.M.; Ghislandi, P.; Tuni, C. url  doi
openurl 
  Title Reduced light avoidance in spiders from populations in light-polluted urban environments Type Journal Article
  Year 2018 Publication Die Naturwissenschaften Abbreviated Journal Naturwissenschaften  
  Volume 105 Issue 11-12 Pages 64  
  Keywords (up) Animals  
  Abstract Increased urbanisation is leading to a rise in light pollution. Light pollution can disrupt the behaviour and physiology of animals resulting in increased mortality. However, animals may also benefit from artificial light sources, as these may aggregate prey or signal suitable environments. For example, spiders are commonly seen congregating around artificial light sources. Changes in selective pressures engendered by urban environments are driving changes in urban organisms, driving better adaptation to these environments. Here, we ask whether urban populations of the synanthropic spider Steatoda triangulosa show different responses to light compared to rural populations. Egg-sacs from urban and rural populations were collected and incubated in a common garden setting, and the emerging spiderlings tested for light preference. While rural spiderlings avoided light (37% built webs in the light), urban spiderlings were indifferent to it (49% built webs in the light). Reduced light avoidance may benefit spiders through increased prey capture, increased movement into suitable habitats, or due to a release from selection pressure from visually hunting predators which do not enter buildings.  
  Address Department of Biology, Ludwig-Maximilians University of Munich, Grosshaderner Str. 2, 82152, Planegg-Martinsried, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-1042 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30377809 Approved no  
  Call Number GFZ @ kyba @ Serial 2140  
Permanent link to this record
 

 
Author Flores, D.E.F.L.; Oda, G.A. url  doi
openurl 
  Title Novel Light/Dark Regimens with Minimum Light Promote Circadian Disruption: Simulations with a Model Oscillator Type Journal Article
  Year 2018 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume in press Issue Pages  
  Keywords (up) Animals  
  Abstract Artificial lab manipulation of LD cycles has enabled simulations of the disruptive conditions found in modern human societies, such as jet-lag, night-work and light at night. New techniques using animal models have been developed, and these can greatly improve our understanding of circadian disruption. Some of these techniques, such as in vivo bioluminescence assays, require minimum external light. This requirement is challenging because the usual lighting protocols applied in circadian desynchronization experiments rely on considerable light input. Here, we present a novel LD regimen that can disrupt circadian rhythms with little light per day, based on computer simulations of a model limit-cycle oscillator. The model predicts that a single light pulse per day has the potential to disturb rhythmicity when pulse times are randomly distributed within an interval. Counterintuitively, the rhythm still preserves an underlying 24-h periodicity when this interval is as large as 14 h, indicating that day/night cues are still detectable. Only when pulses are spread throughout the whole 24-h day does the rhythm lose any day-to-day period correlation. In addition, the model also reveals that stronger pulses of brighter light should exacerbate the disrupting effects. We propose the use of this LD schedule-which would be compatible with the requirements of in vivo bioluminescence assays-to help understand circadian disruption and associated illnesses.  
  Address Instituto de Biociencias, Universidade de Sao Paulo, Sao Paulo, SP, Brazil  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30595077 Approved no  
  Call Number GFZ @ kyba @ Serial 2146  
Permanent link to this record
 

 
Author Smith, H.M.; Neaves, L.E.; Divljan, A. url  doi
openurl 
  Title Predation on cicadas by an Australian Flying-fox Pteropus poliocephalus based on DNA evidence Type Journal Article
  Year 2018 Publication Australian Zoologist Abbreviated Journal Australian Zoologist  
  Volume in press Issue Pages  
  Keywords (up) Animals  
  Abstract Historically, reports of insectivory in family Pteropodidae have largely been anecdotal and thought to be an incidental corollary of flying-foxes feeding on plant products. More recent direct observations of flying-foxes catching and consuming insects, as well as advances in techniques that increase our ability to detect dietary items, suggest that this behaviour may be deliberate and more common than previously thought. Usually, multiple insects are consumed, but it appears that flying-foxes hunt and eat them one at a time. However, we have collected and photographed oral ejecta pellets under trees with high flying-fox activity, some containing evidence of multiple masticated insects. Further genetic analysis proved that these pellets came from Grey-headed Flying-foxes Pteropus poliocephalus. We propose that flying-foxes use an array of insect feeding strategies, most likely in response to variation in insect abundance and activity, as well as abiotic factors such as light and temperature.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0067-2238 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2148  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: