toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Prayag, A.S.; Najjar, R.P.; Gronfier, C. url  doi
openurl 
  Title Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans Type Journal Article
  Year 2019 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res  
  Volume 66 Issue 4 Pages e12562  
  Keywords Human Health; melatonin suppression; melanopic illuminance  
  Abstract INTRODUCTION: Light elicits a range of non-visual responses in humans. Driven predominantly by intrinsically photosensitive retinal ganglion cells (ipRGCs), but also by rods and/or cones, these responses include melatonin suppression. A sigmoidal relationship has been established between melatonin suppression and light intensity, however photoreceptoral involvement remains unclear. METHODS AND RESULTS: In this study, we first modelled the relationships between alpha-opic illuminances and melatonin suppression using an extensive dataset by Brainard and colleagues. Our results show that 1) melatonin suppression is better predicted by melanopic illuminance compared to other alpha-opic illuminances, 2) melatonin suppression is predicted to occur at levels as low as ~1.5 melanopic lux (melanopsin-weighted irradiance 0.2 muW/cm(2)), 3) saturation occurs at 305 melanopic lux (melanopsin-weighted irradiance 36.6 muW/cm(2)). We then tested this melanopsin-weighted illuminance response model derived from Brainard and colleagues' data and show that it predicts equally well melatonin suppression data from our laboratory, although obtained using different intensities and exposure duration. DISCUSSION: Together, our findings suggest that melatonin suppression by monochromatic lights is predominantly driven by melanopsin, and that it can be initiated at extremely low melanopic lux levels in experimental conditions. This emphasizes the concern of the non-visual impacts of low light intensities in lighting design and light-emitting devices. This article is protected by copyright. All rights reserved.  
  Address Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking team, Inserm UMRS 1028, CNRS UMR 5292, Universite Claude Bernard Lyon 1, Universite de Lyon, F-69000, Lyon, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-3098 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30697806 Approved no  
  Call Number GFZ @ kyba @ Serial 2186  
Permanent link to this record
 

 
Author Jechow, A.; Holker, F.; Kyba, C.C.M. url  doi
openurl 
  Title Using all-sky differential photometry to investigate how nocturnal clouds darken the night sky in rural areas Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 1391  
  Keywords Skyglow; differential photometry; clouds; sky brightness  
  Abstract Artificial light at night has affected most of the natural nocturnal landscapes worldwide and the subsequent light pollution has diverse effects on flora, fauna and human well-being. To evaluate the environmental impacts of light pollution, it is crucial to understand both the natural and artificial components of light at night under all weather conditions. The night sky brightness for clear skies is relatively well understood and a reference point for a lower limit is defined. However, no such reference point exists for cloudy skies. While some studies have examined the brightening of the night sky by clouds in urban areas, the published data on the (natural) darkening by clouds is very sparse. Knowledge of reference points for the illumination of natural nocturnal environments however, is essential for experimental design and ecological modeling to assess the impacts of light pollution. Here we use differential all-sky photometry with a commercial digital camera to investigate how clouds darken sky brightness at two rural sites. The spatially resolved data enables us to identify and study the nearly unpolluted parts of the sky and to set an upper limit on ground illumination for overcast nights at sites without light pollution.  
  Address GFZ German Research Centre for Geosciences, Remote Sensing, Telegrafenberg, 14473, Potsdam, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30718668; PMCID:PMC6361923 Approved no  
  Call Number IDA @ john @ Serial 2188  
Permanent link to this record
 

 
Author Meier, J. url  openurl
  Title Contentious Light: An Analytical Framework for Lighting Conflicts Type Journal Article
  Year 2018 Publication International Journal of Sustainable Lighting Abbreviated Journal  
  Volume 20 Issue 1 Pages 62-77  
  Keywords Society; Lighting; Planning  
  Abstract This paper takes into view the broad range of contemporary conflicts regarding outdoor lighting. It proposes a working-definition that allows for differentiating lighting conflicts from other forms of lighting-related contention, as well as an analytical framework that allows for the structured description of individual lighting conflicts, and the comparative analysis of multiple cases. The analytical framework was developed based on the social-scientific analysis of media reports of existing conflict cases in Europe and North America, and informed by existing knowledge from the fields of lighting and conflict studies. A central challenge for developing such a framework is dealing with the high level of contingency and complexity of lighting conflicts. The framework reduces this complexity by focusing its field of vision to those aspects that are directly related to the lighting and its contestation. For each of these aspects, it provides sets of descriptive variables that allow for describing the conflicts’ individuality in a standardized – and thus comparable – way. The framework strictly separates the regarded aspects from their judgment by the conflict parties, making it possible to contrast their views on one and the same lighting situation. A visual template supports the process of analysis. It allows for depicting individual cases in short, and for clearly identifying where perspectives differ. At the multiple-case level, the framework not only opens up possibilities for spatial and temporal comparisons of lighting conflicts and the subsequent development of typologies, but also for harnessing their potential for informing the development of more sustainable planning and policy approaches for artificial lighting.  
  Address Department of Urban and Regional Planning, Technische Universität Berlin, Germany; josiane.meier(at)tu-berlin.de  
  Corporate Author Thesis  
  Publisher IJSL Place of Publication Editor  
  Language (down) English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2190  
Permanent link to this record
 

 
Author Wittenbrink, N.; Ananthasubramaniam, B.; Munch, M.; Koller, B.; Maier, B.; Weschke, C.; Bes, F.; de Zeeuw, J.; Nowozin, C.; Wahnschaffe, A.; Wisniewski, S.; Zaleska, M.; Bartok, O.; Ashwal-Fluss, R.; Lammert, H.; Herzel, H.; Hummel, M.; Kadener, S.; Kunz, D.; Kramer, A. url  doi
openurl 
  Title High-accuracy determination of internal circadian time from a single blood sample Type Journal Article
  Year 2018 Publication The Journal of Clinical Investigation Abbreviated Journal J Clin Invest  
  Volume 128 Issue 9 Pages 3826-3839  
  Keywords Human Health  
  Abstract BACKGROUND: The circadian clock is a fundamental and pervasive biological program that coordinates 24-hour rhythms in physiology, metabolism, and behavior, and it is essential to health. Whereas therapy adapted to time of day is increasingly reported to be highly successful, it needs to be personalized, since internal circadian time is different for each individual. In addition, internal time is not a stable trait, but is influenced by many factors, including genetic predisposition, age, sex, environmental light levels, and season. An easy and convenient diagnostic tool is currently missing. METHODS: To establish a validated test, we followed a 3-stage biomarker development strategy: (a) using circadian transcriptomics of blood monocytes from 12 individuals in a constant routine protocol combined with machine learning approaches, we identified biomarkers for internal time; and these biomarkers (b) were migrated to a clinically relevant gene expression profiling platform (NanoString) and (c) were externally validated using an independent study with 28 early or late chronotypes. RESULTS: We developed a highly accurate and simple assay (BodyTime) to estimate the internal circadian time in humans from a single blood sample. Our assay needs only a small set of blood-based transcript biomarkers and is as accurate as the current gold standard method, dim-light melatonin onset, at smaller monetary, time, and sample-number cost. CONCLUSION: The BodyTime assay provides a new diagnostic tool for personalization of health care according to the patient's circadian clock. FUNDING: This study was supported by the Bundesministerium fur Bildung und Forschung, Germany (FKZ: 13N13160 and 13N13162) and Intellux GmbH, Germany.  
  Address Charite Universitatsmedizin Berlin, corporate member of Freie Universitat Berlin, Humboldt-Universitat zu Berlin, and Berlin Institute of Health, Laboratory of Chronobiology, Berlin, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-9738 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:29953415; PMCID:PMC6118629 Approved no  
  Call Number GFZ @ kyba @ Serial 2194  
Permanent link to this record
 

 
Author Durrant, J.; Green, M.P.; Jones, T.M. url  doi
openurl 
  Title Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus Type Journal Article
  Year 2019 Publication Insect Science Abbreviated Journal Insect Sci  
  Volume in press Issue Pages 744-7917.12665  
  Keywords Animals  
  Abstract A functioning immune system is crucial for protection against disease and illness, yet increasing evidence suggests that species living in urban areas could be suffering from immune suppression, due to the presence of artificial light at night (ALAN). This study examined the effects of ecologically relevant levels of ALAN on three key measures of immune function (haemocyte concentration, lytic activity, and phenoloxidase activity) using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. We reared crickets under an ecologically relevant daily light-cycle consisting of 12 hr bright daylight (2600 lx) followed by either 12 h darkness (0 lx) or dim environmentally-relevant ALAN (1, 10, 100 lx), and then assessed immune function at multiple time points throughout adult life using haemolymph samples. We found that the presence of ALAN had a clear negative effect on haemocytes, while the effects on lytic activity and phenoloxidase activity were more complex or largely unaffected by ALAN. Furthermore, the effects of lifelong exposure to ALAN of 1 lx were comparable to those of 10 and 100 lx. Our data suggest that the effects of ALAN could be large and widespread, and such reductions in the core immune response of individuals will likely have greater consequences for fitness and survival under more malign conditions, such as those of the natural environment. This article is protected by copyright. All rights reserved.  
  Address The School of BioSciences, Faculty of Science, University of Melbourne, Victoria, 3010, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language (down) English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1672-9609 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30720239 Approved no  
  Call Number GFZ @ kyba @ Serial 2196  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: